Companhia de Água e Esgoto do Ceará

DEN - Diretoria de Engenharia GPROJ - Gerência de Projetos de Engenharia

Itapipoca - CE

Projeto Estrutural Básico de Ampliação do Sistema de Tratamento de Água de Itapipoca

VOLUME VI - TOMO III Projeto Estrutural

Cagece - Companhia de Água e Esgoto do Ceará

DEN - Diretoria de Engenharia GPROJ - Gerência de Projetos de Engenharia

EQUIPE TÉCNICA DA GPROJ E ML PROJETOS EIRELI Produto: Projeto Estrutural Básico de Ampliação do Sistema de Tratamento de Água de Itapipoca

Gerente de Projetos de Engenharia

Eng^a. Aline Martins Brito

Coordenação de Projetos Técnicos

Engº. Jorge Humberto Leal de Saboia

Coordenação de Serviços Técnicos de Apoio

Engº. Antônio Agnaldo Araújo Mendes

Coordenação de Custos e Orçamentos de Obras

Engº. Humberto Oliveira Pontes Nunes

Responsável Técnico da ML Projetos Eireli

Engº. Carlos Raphael Monteiro de Lemos

Desenhos

Equipe ML

Edição Final

Janis Joplin S. Moura Queiroz

Colaboração

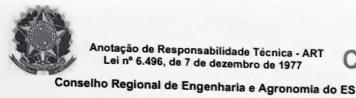
Ana Beatriz de Oliveira Montezuma Gleiciane Cavalcante Gomes

Arquivo Técnico

Patrícia Santos Silva

I - APRESENTAÇÃO

O presente trabalho contempla "**Projeto Básico de Ampliação do Sistema de Tratamento de Água de Itapipoca-CE**", através do processo nº 0094000359/2012-65 para atendimento a Unidade de Negócio da Bacia do Curú e Litoral – UNBCL, localizada no Município de Itapipoca no Estado do Ceará, visando garantir às demandas devido ao crescimento da população da sede municipal, além de proporcionar melhorias na qualidade da água distribuída.


O projeto aqui apresentado abrange a execução do conjunto de obras, de equipamentos e de serviços destinados ao abastecimento de água potável, com a implantação de uma nova unidade de processo de tratamento utilizando a tecnologia de ciclo completo.

O memorial referente ao Projeto Básico encontra-se dividido em 7 (sete) volumes, com as seguintes denominações e subdivisões:

- Volume I Relatório Técnico;
 - Memorial Descritivo e Memorial de Cálculo;
- Volume II Especificações Técnicas: Equipamentos e Materiais e Serviços;
- Volume III Peças Gráficas Hidráulicos, Mecânicos, Arquitetônicos e Civil;
 - Tomo I;
 - Tomo II:
- Volume IV Projeto Elétrico;
- Volume V Projeto de Automação;
 - Tomo I;
 - Tomo II;
 - Tomo III:
- Volume VI Estrutural;
 - Tomo I;
 - Tomo II;
 - Tomo III;
- Volume VII Geotécnica;
 - Tomo I;
 - Tomo II.

ART

Anotação de Responsabilidade Técnica - ART Lei nº 6.496, de 7 de dezembro de 1977

CREA-ES

ART de Obra ou Serviço 0820180124699

ART Individual

1. Responsável Técnico

CARLOS RAPHAEL MONTEIRO DE LEMOS

Título profissional: ENGENHEIRO CIVIL

Empresa contratada: ML PROJETOS EIRELI ME

RNP: 0800128168

Registro: ES-011840/D

Registro: 14177

Nº:

- 2. Dados do Contrato

Contratante: COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ

Rua: AVENIDA AVENIDA LAURO VIEIRA CHAVES

Complemento:

Cidade: FORTALEZA Telefone: 8531011769

Contrato: 74/2017

Valor do Contrato/Honorários: R\$1.000,00

Nº do Aditivo:

UF: CE

Tipo de contratante: PESSOA JURÍDICA

No.

CEP: 60422700

Bairro: AEROPORTO

3. Dados da Obra/Serviço

Rua: AVENIDA AVENIDA LAURO VIEIRA CHAVES

Complemento:

Cidade:

FORTALEZA

Data de início: 27/06/2017

Bairro: AEROPORTO

UF: CE

Prev. Término: 26/12/2019

Quadra

Lote CEP: 60422700

Coord. Geogr.:

CPF/CNPJ: 07040108000157

Proprietário: COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ CPF/CNPJ:07040108000157

4. Atividade Técnica

Qtde de Pavimento(s): 0

Nº Pavimento(s): 0

ATIVIDADE(S) TÉCNICA(S): 35 - 5.1 - ELABORAÇÃO DE PROJETO

Dimensão/Quantidade: 78098

Unidade de medida: M2

PARTICIPAÇÃO:

NATUREZA: 103 - AUTORIA

NÍVEL: 104 - EXECUÇÃO

NATUREZA DO(S) SERVIÇO(S): 1105 - SISTEMA DE ABASTECIMENTO DE ÁGUA E/OU ESGOTO SANITÁRIO, 1203 - TRATAMENTO D ÁGUA, 1204 - TRATAMENTO DE ESGOTO E RESÍDUOS, 9111 - SERVIÇOS AFINS E CORRELATOS (ESPECIFICAR NO CAMPO 22)

TIPO DA OBRA/SERVIÇO: 202 - FUNDAÇÕES,222 - ESTRUTURAS DE CONCRETO,406 - ESTAÇÕES DE TRATAMENTO DE ESGOTO,407 - ESTAÇÕES DE TRATAMENTO

PROJETO(S)/SERVIÇO(S): 2 - PROJETO ESTRUTURAL,7 - PROJETO DE FUNDAÇÕES

Após a conclusão das atividades técnicas, o profissional deverá proceder a baixa desta ART.

5. Observações

CONFORME CONTRATO Nº74/2017

6. Declarações

Acessibilidade: <declara a aplicabilidade das regras de acessibilidade previstas nas normas técnicas da ABNT, na legislação específica e no Decreto nº5.296, de 2 de dezembro de 2004, às atividades profissionais acima relacionadas.>

7. Entidade de classe

NENHUMA ENTIDADE

8. Assinaturas

EL MONTEIRO DE LEA

ALINE MARTINS

Assinado de forma digital por ALINE COMPASKIA OF AGU2 7 3 8 0 3 8 7 Dados: 2021.07.22 18:37:46-03:00

Registrada em: 14/11/2018 Data de pagamento: 22/11/2018

9. Informações

- A ART é válida somente quando quitada, podendo sua conferência ser realizada no site do CREA.
- A autenticidade deste documento pode ser verificada no site www.creaes.org.br ou www.confea.org.br
- A guarda da via assinada da ART será de responsabilidade do profissional e do contratante com o objetivo de documentar o vinculo contratual.

www.creaes.org.br tel: (27)3134-0046

creaes@creaes.org.br art@creaes.org.br

Valor ART: R\$ 82,94

Valor Pago: R\$ 82,94

Nosso Número: 14000000002555366

Estação Elevatória de Água/ RAP 150m3

MEMORIA DE CÁLCULO – ESTAÇÃO ELEVATÓRIA DE ÁGUA/RAP 150M³

Serra/ES

22 de maio de 2020

ÍNDICE

<u>ITEM</u>	<u>DESCRIÇÃO</u>	<u>PÁGINA</u>
1.1	OBJETIVO	3
1.2	DOCUMENTOS DE REFERÊNCIA	3
1.3	INTRODUÇÃO	3
1.4	CARACTERÍSTICAS GERAIS DO PROJETO	3
2.0	MODELO DE CÁLCULO	<u>6</u>
2.1	CARGAS E COMBINAÇÕES	<u>7</u>
2.2	DIMENSIONAMENTO DAS SEÇÕES	<u>9</u>
2.3	SEÇÕES DE CONCRETO UTILIZADAS	<u>10</u>
2.4	FUNDAÇÕES	<u>10</u>
3.0	RESULTADOS	<u>12</u>
3.1	PAR1	<u>12</u>
3.2	PAR2	<u>14</u>
3.3	PAR3	<u>17</u>
3.4	PAR4	<u>20</u>
3.4	PAR5=PAR7	<u>22</u>
3.5	FUNDO	<u>24</u>
3.6	FUNDO 02	<u>27</u>
3.7	TAMPA	<u>30</u>

1.1 OBJETIVO

Este presente trabalho visa desenvolver o projeto estrutural da estação elevatória de água/rap150m³.

1.2 DOCUMENTOS DE REFERÊNCIA

Os documentos relacionados foram utilizados na elaboração deste documento ou contêm instruções e procedimentos aplicáveis a ele. Devem ser utilizados na sua revisão mais recente: SAA Itapipoca - 18 a 20 EE Lavagem dos Filtros e RAP 150m3

1.3 INTRODUÇÃO

O presente trabalho complementa as pranchas de armação e formas relativas à: estação elevatória de água/rap150m³.

O dimensionamento dos elementos citados fora executado tomando como base as normas que seguem:

- NBR 6118 Projeto de estruturas de concreto Procedimentos
- NBR 6120 Cargas para o cálculo de estruturas de edificações
- NBR 6122 Projeto e execução de fundações
- NBR 6123 Força devidas ao vento em edificações
- NBR 8681:2003 Ações e segurança nas estruturas Procedimentos.

Documentos técnicos e livros como:

- Resistência do Materias, V. Feodosiev
- Curso de Concreto Armado, José Milton de Araújo

Além dos softwares de dimensionamento e análise hiperestática: STRAP 2011

1.4 CARACTERÍSTICAS GERAIS DO PROJETO

- Fck: 30 MPa
- Fator água-cimento: 0.45 (máximo)
- Aço CA 50 e CA 60
- Es: 210 GPa
- Deformação limite do aço para dimensionamento: 10%.
- Grau de agressividade do Meio Ambiente: IV (NBR 6118/2014)
- Limite de abertura de Fissuras ≤ 0.2 mm
- Dimensão máxima do agregado graúdo: 25 mm
- Método para análise de 2° Ordem Global: Gama Z

- Compactação com Proctor normal à 100%
 - Classe de Agressividade Ambiental NBR6118:2014

		Classificação geral do tipo de ambiente para efeito de projeto	Risco de deterioração da estrutura	
2347	France	Rural		
218	Fraca	Submersa	Insignificante	
NA STATE	Moderada	Urbana ^{a, b}	Pequeno	
420	0//2.2	Marinha ^a	Grande	
111	Forte	Industrial a, b		
	Muito forte	Industrial ^{a, c}	Elevado	
IV	Widito forte	Respingos de maré		

- Pode-se admitir um microclima com uma classe de agressividade mais branda (uma classe acima) para ambientes internos secos (salas, dormitórios, banheiros, cozinhas e áreas de serviço de apartamentos residenciais e conjuntos comerciais ou ambientes com concreto revestido com argamassa e pintura).
- Pode-se admitir uma classe de agressividade mais branda (uma classe acima) em obras em regiões de clima seco, com umidade média relativa do ar menor ou igual a 65 %, partes da estrutura protegidas de chuva em ambientes predominantemente secos ou regiões onde raramente chove.
- Ambientes quimicamente agressivos, tanques industriais, galvanoplastia, branqueamento em indústrias de celulose e papel, armazéns de fertilizantes, indústrias químicas.
- Cobrimento de acordo com a Classe de Agressividade Ambiental NBR6118:2014

Tabela 7.2	 Correspondência e o cobrimento 			ide ambienta	le
		Classe de	agressividade	ambiental (1	abela
Tipo de estrutura	Componente ou	É	П	Ш	

		Classe de agressividade ambiental (Tabela 6.1)						
Tipo de estrutura	Componente ou	1	П	III	IN c			
	elemento	Cobrimento nominal mm						
	Laje ^b	20	25	35	45			
	Viga/pilar	25	30	40	50			
Concreto armado	Elementos estruturais em contato com o solo ^d		30	40	50			
Concreto protendido ^a	Laje	25	30	40	50			
	Viga/pilar	30	35	45	55			

Cobrimento nominal da bainha ou dos fios, cabos e cordoalhas. O cobrimento da armadura passiva deve respeitar os cobrimentos para concreto armado,

b Para a face superior de lajes e vigas que serão revestidas com argamassa de contrapiso, com revestimentos finais secos tipo carpete e madeira, com argamassa de revestimento e acabamento, como pisos de elevado desempenho, pisos cerâmicos, pisos asfálticos e outros, as exigências desta Tabela podem ser substituídas pelas de 7.4.7.5, respeitado um cobrimento nominal ≥ 15 mm.

Nas superfícies expostas a ambientes agressivos, como reservatórios, estações de tratamento de água e esgoto, condutos de esgoto, canaletas de efluentes e outras obras em ambientes química e intensamente agressivos, devem ser atendidos os cobrimentos da classe de agressividade IV.

No trecho dos pilares em contato com o solo junto aos elementos de fundação, a armadura deve ter cobrimento nominal ≥ 45 mm.

Limite de Abertura de Fissuras de acordo com a Classe de Agressividade Ambiental NBR6118:2014

Tabela 13.4 – Exigências de durabilidade relacionadas à fissuração e à proteção da armadura, em função das classes de agressividade ambiental

Tipo de concreto estrutural	Classe de agressividade ambiental (CAA) e tipo de protensão	Exigências relativas à fissuração	Combinação de ações em serviço a utilizar	
Concreto simples	CAA I a CAA IV	Não há		
	CAAI	ELS-W <i>w</i> _k ≤ 0,4 mm	ĺ	
Concreto armado	CAA II e CAA III	ELS-W <i>w</i> _k ≤ 0,3 mm	Combinação frequente	
	CAA IV	ELS-W <i>w</i> _k ≤ 0,2 mm		
Concreto protendido nível 1 (protensão parcial)	Pré-tração com CAA I ou Pós-tração com CAA I e II	ELS-W <i>w</i> _k ≤ 0,2 mm	Combinação frequente	
Concreto	Pré-tração com CAA II	Verificar as dua:	s condições abaixo	
protendido nível 2	ou	ELS-F	Combinação frequente	
(protensão limitada)	Pós-tração com CAA III e IV	ELS-D a	Combinação quase permanente	
Concreto	NAME OF THE PARTY	Verificar as dua	s condições abaixo	
protendido nível 3 (protensão	Pré-tração com CAA III e IV	ELS-F	Combinação rara	
completa)		ELS-Da	Combinação frequente	

a A critério do projetista, o ELS-D pode ser substituído pelo ELS-DP com a_p = 50 mm (Figura 3.1). NOTAS

> Fator Água-Cimento de acordo com a Classe de Agressividade Ambiental NBR6118:2014

¹ As definições de ELS-W, ELS-F e ELS-D encontram-se em 3.2.

² Para as classes de agressividade ambiental CAA-III e IV, exige-se que as cordoalhas n\u00e3o aderentes tenham prote\u00e7\u00e3o especial na regi\u00e3o de suas ancoragens.

³ No projeto de lajes lisas e cogumelo protendidas, basta ser atendido o ELS-F para a combinação frequente das ações, em todas as classes de agressividade ambiental.

Tabela 7.1 – Correspondência entre a cla	sse de agressividade e a qualidade do concreto
--	--

	Tipo b, c	Cla	isse de agressi	vidade (Tabela (6.1)
Concreto a	Tipo 5,5	1	П	Ш	IV
Relação	CA	≤ 0,65	≤ 0,60	≤ 0,55	≤ 0,45
água/cimento em massa	CP	≤ 0,60	≤ 0,55	≤ 0,50	≤ 0,45
Classe de concreto (ABNT NBR 8953)	CA	≥ C20	≥ C25	≥ C30	≥ C40
	CP	≥ C25	≥ C30	≥ C35	≥ C40

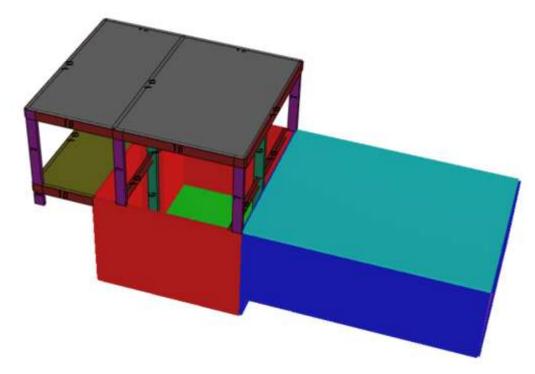
O concreto empregado na execução das estruturas deve cumprir com os requisitos estabelecidos na ABNT NBR 12655.

Dimensão máxima do agregado graúdo - NBR6118:2014

7.4.7.6 A dimensão máxima característica do agregado graúdo utilizado no concreto não pode superar em 20 % a espessura nominal do cobrimento, ou seja:

 $d_{\text{máx}} \le 1.2 c_{\text{nom}}$

2.0 MODELO DE CÁLCULO


Laje de piso do reservatório apoiado sobre base elástica. O campo de deslocamentos e tensões foi calculada adotando-se a metodologia implementada pelo software comercial STRAP VERSÃO 2011.

b CA corresponde a componentes e elementos estruturais de concreto armado.

CP corresponde a componentes e elementos estruturais de concreto protendido.

PERSPECTIVA 3D - estação elevatória de água/rap150m³, apoiado sobre Base Elástica

2.1 CARGAS E COMBINAÇÕES

Ações Permanentes:

- g1 Peso próprio do concreto (permanente direta)
- g2 Empuxo de terra (permanente direta)
- q1 Água

Ações Variáveis Acidentais:

• q2 - Sobrecarga

Coeficientes de ponderação (γg , γq), fatores de combinação (ψq), e fatores de redução ($\psi 1$, $\psi 1$) para:

- Combinação Normal (CN) em Estado Limite de Utilização (ELU);
- Combinação Quase Permanente (CQP) em Estado Limite de Serviço (ELS);
- Combinação Frequente (CF) em Estado Limite de Serviço (ELS).

	CN-ELU	CQP-ELS	CF-ELS
Ações Permanentes:	γg	γg	γg
Cargas permanentes	1,4	1	1
Retração	1,2	1	1
Ações Variáveis (qdo. princ.):	γq	γq	γq
Sobrecarga	1,4	1	1
Empuxo hidrostático	1,4	1	1
Gradiente térmico	1,2	1	1
Ações Variáveis (qdo. secnd.):	ψ0	ψ1	ψ2
Sobrecarga	0,8	0,7	0,6
Empuxo hidrostático	0,8	0,7	0,6
Gradiente térmico	0,6	0,5	0,3

Grandezas Físicas das Ações:

- g1 Peso próprio do concreto = Volume dos elementos multiplicado pelo peso específico do concreto armado. Unidades: peso em tf e o volume em m³.
- g2 -Empuxo de terra

Argila com areia fina cor variegada

$$\gamma t = 18,00 \text{ kN/m}^3 \text{ Godoy}, 1972$$

$$\phi = 0^{\circ}$$
 K0 = 1,00 K0 = 1 - sen ϕ

p= K0.γt.h

- g3 Enchimentos = Volume do elemento multiplicado pelo peso específico do material. Unidades: peso em tf e volume em m³.
- g4 Retração: Não Consideramos uma retração em toda a estrutura
- q1 Empuxo Hidrostático interno: Em todas as faces internas estão sendo aplicada uma pressão de base ao topo. O peso específico utilizado no cálculo destas pressões é o da água, igual a 1tf/m³ multiplicado pela altura da lamina d'água.
- q2 Sobrecarga: Nas lajes de tampa e escadas foram consideradas sobrecargas de utilização iguais a 0,3 tf/m².
- q3 gradiente térmico: Não foi considerado, as estruturas estão enterradas e as partes expostas tem pequenas dimensões e em consequência as deformações devido ao gradiente térmico são insignificantes.

Combinações:

Estado Limite Último - ELU-CN (cheio):

C01 = 1,40.(g1+g3)+g2+1,40.q1+1,20.q2

C02 = 1,40.(g1+g3)+g2+1,40.q2+1,20.q1

Estado Limite Último - ELU-CN (vazio):

C03 = 1,40.(g1+g2+g3)+1,40.q2

Estado Limite de Serviço ELS-CF (cheio)

C05 = 1,00.(g1+g2+g3)+0,70.q1+0,60.q2

C06 = 1,00.(g1+g2+g3)+0,70.q2+0,60.q1

Estado Limite de Serviço ELS-CF (vazio)

C07 = 1,00.(g1+g2+g3)+0,70.q2

Especial, para verificação da flutuação

C08 = 1,00.(g1+g3)+1,00.q4

2.2 DIMENSIONAMENTO DAS SEÇÕES

Os cálculos de paredes e lajes de fundo e tampas foram considerados um elemento estrutural de 100 cm de largura e altura h, para o dimensionamento a flexo-tração com a força da envoltória máxima nas direções x e y e momentos da envoltória máxima e mínima nas direções x e y. A compressão aqui foi desprezada por entender que a solicitação máxima acontece quando o elemento estrutural em questão é tracionado junto com a flexão.

Após a verificação da flexo-tração o elemento foi verificado com relação à formação de fissuras.

Momento mínimo para a dispensa de análise de fissuração (ESTÁDIO I e II):

$$M_R = a f_{ct} I_o / y_t [tf. m]$$
(1)

Calculando teremos, M_r para um fck = 30 MPa e h variado igual à:

- h=15cm; M_r = 1,906tf.m
- h=20cm; M_r = 3,388tf.m
- h=25cm; M_r = 5,295tf.m

h=30cm; M_r= 7,625tf.m
 h=35cm; M_r= 10,378tf.m
 h=40cm; M_r= 13,555tf.m

Armadura mínima prevista em norma:

$$A_{s,min} = \rho_{min} 100h \left[\frac{cm^2}{m}\right] \tag{2}$$

Sendo ho_{min} taxa de armadura mínima conforme a NBR 6118:2014

Forma da seção		Valores de ρ _{mín} ^a (A _{s,mín} /A _c) %													
	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
Retangular	0,150	0,150	0,150	0,164	0,179	0,194	0,208	0,211	0,219	0,226	0,233	0,239	0,245	0,251	0,256

a Os valores de ρ_{min} estabelecidos nesta Tabela pressupõem o uso de aço CA-50, d/h = 0,8 e γ_{C} = 1,4 e γ_{S} = 1,15. Caso esses fatores sejam diferentes, ρ_{min} deve ser recalculado.

Calculando teremos, A_{s,min} para um fck = 30MPa, b=100cm, seção retangular e h variado igual à:

• h=15cm; $A_{s,min} = 2,25cm^2/m$ Ø8 C/20

• h=20cm; $A_{s,min} = 3,00 \text{cm}^2/\text{m}$ Ø8 C/15

• h=25cm; A_{s,min} = 3,75cm²/m Ø8 C/12 ou Ø10 C/20

h=30cm; A_{s,min} = 4,50cm²/m Ø8 C/10 ou Ø10 C/15

• h=35cm; $A_{s,min} = 5,25cm^2/m$ Ø10 C/12

• h=40cm; $A_{s,min} = 6,00 \text{cm}^2/\text{m}$ Ø10 C/12

2.3 SEÇÕES DE CONCRETO UTILIZADAS

Foram utilizadas as seguintes seções de concreto para as respectivas estruturas:

estação elevatória de água/rap150m³:

Tampas: 20 cm; Paredes: 20 cm

Fundo: 20 cm; Laje = 12cm.

2.4 FUNDAÇÃO

Para a estrutura do Reservatório utilizamos a laje de fundo apoiada diretamente sobre o solo. Como modelo de cálculo adotamos um sistema de molas de resposta linear. Para obter a tensão média admissível a partir desse ensaio, utiliza-se o número médio de golpes aplicando a seguinte fórmula:

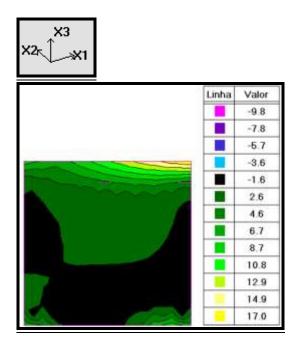
s = 0.20 * SPT Médio (kgf/m²)

A partir dos valores de tensão média admissível é possível obter o valor de Kv por correlação, utilizando a tabela abaixo:

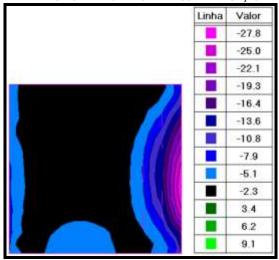
Tensão admissível (kgf/cm²)	Kv (kgf/cm³)	Tensão admissível (kgf/cm²)	Kv (kgf/cm³)
0,25	0,65	2,15	4,30
0,30	0,78	2,20	4,40
0,35	0,91	2,25	4,50
0,40	1,04	2,30	4,60
0,45	1,17	2,35	4,70
0,50	1,30	2,40	4,80
0,55	1,39	2,45	4,90
0,60	1,48	2,50	5,00
0,65	1,57	2,55	5,10
0,70	1,66	2,60	5,20
0,75	1,75	2,65	5,30
0,80	1,84	2,70	5,40
0,85	1,93	2,75	5,50
0,90	2,02	2,80	5,60
0,95	2,11	2,85	5,70
1,00	2,20	2,90	5,80
1,05	2,29	2,95	5,90
1,10	2,38	3,00	6,00
1,15	2,47	3,05	6,10
1,20	2,56	3,10	6,20
1,25	2,65	3,15	6,30
1,30	2,74	3,20	6,40
1,35	2,83	3,25	6,50
1,40	2,92	3,30	6,60
1,45	3,01	3,35	6,70
1,50	3,10	3,40	6,80
1,55	3,19	3,45	6,90
1,60	3,28	3,50	7,00
1,65	3,37	3,55	7,10
1,70	3,46	3,60	7,20
1,75	3,55	3,65	7,30
1,80	3,64	3,70	7,40
1,85	3,73	3,75	7,50
1,90	3,82	3,80	7,60
1,95	3,91	3,85	7,70
2,00	4,00	3,90	7,80
2,05	4,10	3,95	7,90
2,10	4,20	4,00	8,00

Folte: Sale, Morrso (1993)

Adotamos uma taxa de solo de 2,5Kgf/cm², conforme sondagem fornecida.

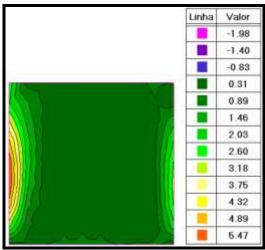


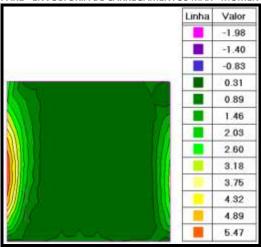
3.0 RESULTADOS -ESTAÇÃO ELEVATÓRIA DE ÁGUA/RAP 150M³


O software usado foi o STRAP VERSÃO 2011 que considera as lajes e paredes como placas de 50 à 40 centímetros (espaçamento adotado mediante critérios definidos). Os carregamentos das lajes e paredes são lançados diretamente sobre os elementos

As paredes e lajes das estruturas foram tratadas com lajes de comprimento unitário e altura h dimensionadas sobre flexo-compressão ou flexo-tração e foram armadas para resistir aos momentos e trações ou compressão da envoltória de combinações máximas e mínimas.

3.1 PAR1


PAR1 - ENVOLTÓRIA DE CARREGAMENTOS MAX - FORÇAS NA DIREÇÃO DE X (tf/m)


PAR1- ENVOLTÓRIA DE CARREGAMENTOS MAX - FORÇAS NA DIREÇÃO DE Y (tf/m)

PAR1 - ENVOLTÓRIA DE CARREGAMENTOS MAX - MOMENTO NA DIREÇÃO DE X (tf.m/m)

PAR1 - ENVOLTÓRIA DE CARREGAMENTOS MAX - MOMENTO NA DIREÇÃO DE Y (tf.m/m)

	TARE ENVOLVERING DE CARRECAMENTOS MAX. MOMENTO NA DIREGAO DE 1 (LIMITA)											
Lajes Maciças em Concreto Armado - NBR 6118												
Mate	Materiais		rços	Seção				SE	GURAN	IÇA		
Aço	fck	Mk	Nk	h	d'	Cź	As,mín			W	Classe	
(fyk)	(Mpa)	(tf.m/m)	(tf/m)	(cm)	(cm)	ξ máx.	(cm²/m)	γc	γs	Ϋ́t	Agres.	
500	30	2,03	12,90	20	4,9	0,5	3,46	1,40	1,15	1,40	Classe IV	

ELU - Flexão Composta - Arm. Assimétrica										
Armadura	nococcário		Arranjo							
Armauura	necessaria	Φ (mm)	Esp. (cm)	As,tot (cm²/m)						
As 1 (cm²/m)	-	8	10,0	5,03						
As 2	1,86	8	10,0	5,03						

Resumo - ELU							
Zona	ω1	ω 2					
Zona D	0,119	0,000	0,029				

Verificação Fissuras - LAJES - FLEXÃO COMPOSTA - ARM. SIMPLES- CONCRETO ARMADO							
riais	Esfo	rços	Seção				
fck (Mpa)	Mfr (tf.m/m)	Nfr (tf/m)	h (cm)	d' (cm)	Bitola ø	Esp. (cm)	
30	2,03	12,9	20	4,9	8	10,0	
Cálculo							
Es (Mpa)	Ecs (Mpa)	fctm (Mpa)	η1	hi (cm)	bi (cm)	Acri (cm²)	
210.000	26.072	2,90	2,25	10,90	10,00	109,00	
ρri	ω	x (cm)	σsi (Mpa)	Erro	Wk1 (mm)	Wk2 (mm)	
0,004611512	0,321	4,85	139,95	0,00	0,027479128	0,1729605	
	riais fck (Mpa) 30 Es (Mpa) 210.000 pri	riais Esfo fck (Mpa) Mfr (tf.m/m) 30 2,03 Es (Mpa) Ecs (Mpa) 210.000 26.072 ρri ξ	riais Esforços fck (Mpa) Mfr (tf.m/m) Nfr (tf/m) 30 2,03 12,9 Cálculo Es (Mpa) Ecs (Mpa) fctm (Mpa) 210.000 26.072 2,90 pri ξ x (cm)	riais Esforços fck (Mpa) Mfr (tf.m/m) Nfr (tf/m) h (cm) 30 2,03 12,9 20 Cálculo Es (Mpa) Ecs (Mpa) fctm (Mpa) η1 210.000 26.072 2,90 2,25 pri ξ x (cm) σsi (Mpa)	riais Esforços S fck (Mpa) Mfr (tf.m/m) Nfr (tf/m) h (cm) d' (cm) 30 2,03 12,9 20 4,9 Cálculo Es (Mpa) Ecs (Mpa) fctm (Mpa) η1 hi (cm) 210.000 26.072 2,90 2,25 10,90 pri ξ x (cm) σsi (Mpa) Erro	riais Esforços Seção fck (Mpa) Mfr (tf.m/m) Nfr (tf/m) h (cm) d' (cm) Bitola ø 30 2,03 12,9 20 4,9 8 Cálculo Es (Mpa) Ecs (Mpa) fctm (Mpa) η1 hi (cm) bi (cm) 210.000 26.072 2,90 2,25 10,90 10,00 pri ξ x (cm) σsi (Mpa) Erro Wk1 (mm)	

PAR1- FORÇA E MOMENTO NA DIREÇÃO DE X

Lajes Maciças em Concreto Armado - NBR 6118											
Mate	riais	Esfo	rços	Seção			SEGURANÇA				
Aço	fck	Mk	Nk	h	d'	Cź	As,mín	24	,	7/ s	Classe
(fyk)	(Mpa)	(tf.m/m)	(tf/m)	(cm)	(cm)	ξ máx.	(cm²/m)	γc	γs	Åt	Agres.
500	30	2,41	16,40	20	5,0	0,5	3,46	1,40	1,15	1,40	Classe IV

ELU - Flexão Composta - Arm. Assimétrica								
Armadura	nacaceária	Arranjo						
Armauura	liecessaria	Φ (mm)	Esp. (cm)	As,tot (cm ² /m)				
As 1 (cm²/m)	1	10	12,0	6,54				
As 2 (cm²/m)	2,08	10	12,0	6,54				

Resumo - ELU							
Ζοπα ξ ω1 ω2							
Zona D	0,147	0,000	0,033				

Verificação Fissuras - LAJES - FLEXÃO COMPOSTA - ARM. SIMPLES- CONCRETO ARMADO								
Mate	riais	Esfo	Esforços Seção					
Aço (fyk)	fck (Mpa)	Mfr (tf.m/m)	Nfr (tf/m)	h (cm)	d' (cm)	Bitola ø	Esp. (cm)	
500	30	2,41	16,4	20	5	10	12,0	
			Cálculo					
As (cm²/m)	Es (Mpa)	Ecs (Mpa)	fctm (Mpa)	η1	hi (cm)	bi (cm)	Acri (cm²)	
6,54	210.000	26.072	2,90	2,25	12,50	12,00	150,00	
αs	ρri	ξ	x (cm)	σsi (Mpa)	Erro	Wk1 (mm)	Wk2 (mm)	
8,05	0,005235988	0,367	5,50	124,22	0,00	0,027061024	0,170140718	

PAR1 - FORÇA E MOMENTO NA DIREÇÃO DE Y

3.2 PAR 2

PAR2 – ENVOLTÓRIA DE CARREGAMENTOS MAX - FORÇAS NA DIREÇÃO DE X (tf/m)

	Linha	Valor
		-31.6
		-26.6
		-21.6
		-16.6
14		-11.6
		-6.6
		3.4
		8.4
		13.4
		18.4
		23.4
		28.4
		33.4

PAR2 – ENVOLTÓRIA DE CARREGAMENTOS MAX - FORÇAS NA DIREÇÃO DE Y (tf/m)

	Linha	Valor
		-1.35
		-0.92
		-0.49
		0.36
		0.79
3/3/1		1.22
		1.64
		2.07
7), 44		2.50
277.14		2.93
- 21 M	-	3.35
		3.78
7//		4.21

PAR2 – ENVOLTÓRIA DE CARREGAMENTOS MAX - MOMENTO NA DIREÇÃO DE X (tf.m/m)

	Linha	Valor
		-1.48
		-0.76
		0.67
		1.39
		2.10
100		2.82
		3.53
		4.25
- 1		4.97
- 4		5.68
- 0	-	6.40
		7.12
		7.83

PAR2 – ENVOLTÓRIA DE CARREGAMENTOS MAX - MOMENTO MAX NA DIREÇÃO DE Y (tf.m/m)

	Lajes Maciças em Concreto Armado - NBR 6118										
Mate	riais	Esfo	rços	Seção			SEGURANÇA				
Aço	fck	Mk	Nk	h	d'	,	As,mín			,	Classe
(fyk)	(Mpa)	(tf.m/m)	(tf/m)	(cm)	(cm)	ξ máx.	(cm²/m)	γc	γs	γ_{f}	Agres.
500	30	1,14	16,50	15	4,9	0,5	2,60	1,40	1,15	1,40	Classe IV

ELU - Flexão Composta - Arm. Assimétrica								
Armadura	nococcário	Arranjo						
Armauura	liecessaria	Φ (mm)	Esp. (cm)	As,tot (cm ² /m)				
As 1 (cm²/m)	1	8	10,0	5,03				
As 2 (cm²/m)	0,03	8	10,0	5,03				

Resumo - ELU							
Zona	3	ω 2					
Zona D	0,158	0,000	0,001				

Verificaç	ão Fissuras ·	- LAJES - FLEX	(ÃO COMPOST	TA - ARM. S	MPLES- C	ONCRETO A	ARMADO
Mate	riais	Esfo	rços		S	eção	
Aço (fyk)	fck (Mpa)	Mfr (tf.m/m)	Nfr (tf/m)	h (cm)	d' (cm)	Bitola ø	Esp. (cm)
500	30	1,14	16,5	15	4,9	8	10,0
			Cálculo				
As (cm²/m)	Es (Mpa)	Ecs (Mpa)	fctm (Mpa)	η1	hi (cm)	bi (cm)	Acri (cm²)
5,03	210.000	26.072	2,90	2,25	10,90	10,00	109,00
αs	ρri	ξ	x (cm)	σsi (Mpa)	Erro	Wk1 (mm)	Wk2 (mm)
8,05	0,004611512	0,538	5,43	48,28	0,00	0,00327	0,05966496

PAR2 – FORÇA E MOMENTO NA DIREÇÃO DE X

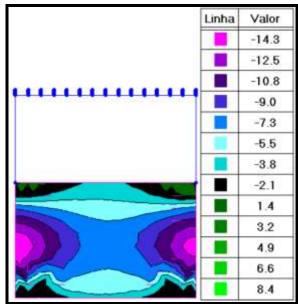
		Laje	s Maciç	as em Con	creto Ar	mado - l	NBR 611	18			
Mate	riais	Esfo	rços		Seção			SE	GURAN	ΙÇΑ	
Aço	fck	Mk	Nk	h	d'	C	As,mín				Classe
(fyk)	(Mpa)	(tf.m/m)	(tf/m)	(cm)	(cm)	ξ máx.	(cm²/m)	γc	γs	γ_{f}	Agres.
500	30	2,82	18,40	20	5,0	0,5	3,46	1,40	1,15	1,40	Classe IV

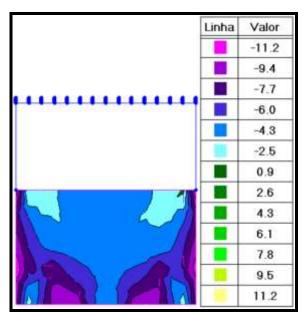
ELI	U - Flexão C	omposta -	Arm. Assim	étrica
Armadura	nococcário		Arranjo	
Armauura	Hecessaria	Φ (mm)	Esp. (cm)	As,tot (cm ² /m)
As 1 (cm²/m)	-	10	10,0	7,85
As 2 (cm²/m)	2,69	10	10,0	7,85

	Resumo - E	LU	
Zona	ξ	ω1	ω 2
Zona D	0,171	0,000	0,043

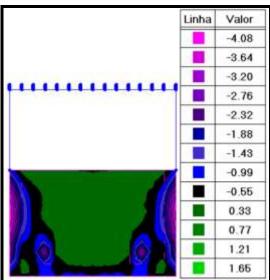
Verificaç	ão Fissuras -	· LAJES - FLEX	(ÃO COMPOST	TA - ARM. S	MPLES- C	ONCRETO A	ARMADO
Mate	riais	Esfo	rços		S	eção	
Aço (fyk)	fck (Mpa)	Mfr (tf.m/m)	Nfr (tf/m)	h (cm)	d' (cm)	Bitola ø	Esp. (cm)
500	30	2,82	18,4	20	5	10	10,0
			Cálculo				
As (cm²/m)	Es (Mpa)	Ecs (Mpa)	fctm (Mpa)	η1	hi (cm)	bi (cm)	Acri (cm²)
7,85	210.000	26.072	2,90	2,25	12,50	10,00	125,00
αs	ρri	ξ	x (cm)	σsi (Mpa)	Erro	Wk1 (mm)	Wk2 (mm)
8,05	0,006283185	0,382	5,74	129,57	0,00	0,029440781	0,149532185

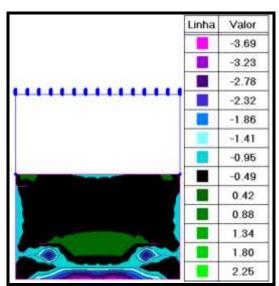
PAR2 – FORÇA E MOMENTO NA DIREÇÃO DE Y


Tel: +55 (27) 3060-8013 / +55 (27) 3060-8208



3.3 PAR 3


PAR3 - ENVOLTÓRIA DE CARREGAMENTOS MAX - FORÇAS NA DIREÇÃO DE X (tf/m)


PAR3 – ENVOLTÓRIA DE CARREGAMENTOS MAX - FORÇAS NA DIREÇÃO DE Y (tf/m)

PAR3 – ENVOLTÓRIA DE CARREGAMENTOS MAX - MOMENTO NA DIREÇÃO DE X (tf.m/m)

PAR3 – ENVOLTÓRIA DE CARREGAMENTOS MAX - MOMENTO MAX NA DIREÇÃO DE Y (tf.m/m)

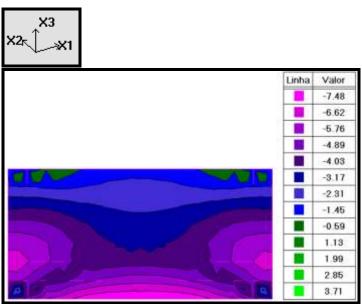
		Lajes	s Maciça	s em Cor	creto Ar	mado -	NBR 611	18			
Mate	eriais	Esfo	rços		Seção			SE	GURAN	IÇA.	
Aço (fyk)	fck (Mpa)	Mk (tf.m/m)	Nk (tf/m)	h (cm)	d' (cm)	ξmáx.	As,min (cm²/m)	γο	γs	γι	Classe Agres.
500	30	1,88	10,80	20	4,9	0,5	3,46	1,40	1,15	1,40	Classe IV

ELU	- Flexão Co	omposta -	Arm. Assim	étrica						
A		Arranjo								
Armadura n	ecessana	O (mm)	Esp. (cm)	As tot (cm²/m)						
As1 (cm²/m)	8	8	10,0	5,03						
As2 (cm²/m)	1,94	8	10,0	5,03						

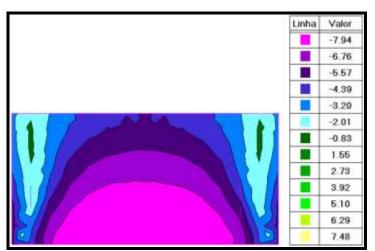
F	Resumo -	ELU	
Zona	ξ	ωı	W 2
Zona D	0,107	0,000	0,031

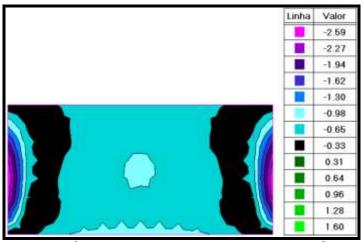
Mat	eriais	Esfo	rços			Seção	
Aço (fyk)	fck (Mpa)	Mfr (tf.m/m)	Nfr (tf/m)	h (cm)	d' (cm)	Bitola ø	Esp. (cm)
500	30	1,88	10,8	20	4,9	8	10,0
			Cálculo				
As (cm ² /m)	Es (Mpa)	Ecs (Mpa)	fctm (Mpa)	η1	hi (cm)	bi (cm)	Acri (cm²)
5,03	210.000	26.072	2,90	2,25	10,90	10,00	109,00
as	pri	ξ	x (cm)	σsi (Mpa)	Erro	Wkt (mm)	Wk2 (mm)
8,05	0.004611512	0,306	4,62	141,77	0,00	0.0281985	0,17520982

PAR3 – FORÇA E MOMENTO NA DIREÇÃO DE X

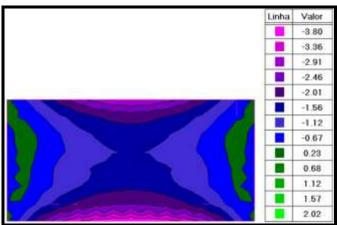

		Laje	s Maciç	as em Conc	reto A	rmado -	NBR 61	18			
Mater	iais	Esf	orços		Seção			SE	GURAN	IÇA	
Aço (fyk)	fck (Mpa)	Mk (tf.m/m)	Nk (tf/m)	h (cm)	d' (cm)	ξ máx.	As,min (cm²/m)	γc	γs	γι	Classe Agres.
500	30	2,32	7,70	20	5,0	0,5	3,46	1,40	1,15	1,40	Classe IV
ELU	- Flexão C	omposta -	Arm. Assim	étrica							
- 107	1000	- 1	Arranjo								
Armadura r	ecessaria	Φ (mm)	Esp. (cm)	As,tot (cm²/m)							
As1		40	10.0	7.00			Resumo -	ELU			
(cm²/m)	= ;	10	10,0	7,85		Zona	ξ	wt	w 2		
As2 (cm²/m)	3,62	10	10,0	7,85		Zona D	0,121	0,000	0,058		
Verific	ação Fiss	uras - L	AJES - FL	EXÃO COMP	OSTA	ARM. SIN	MPLES- C	ONCR	ETO	ARMA	DO
M	ateriais		E	sforços				Seção			
Aço (fyk)	fck (N	lpa)	Mfr (tf.m/m)	Nfr (tf/m)	h (cm)	d' (cm)	Bito	la ø	Esp	. (cm)
500	30		2,32	7,7		20	5	1	0	1	0,0
	537	770		Cáld	ulo	10.0		10			
As (cm ³ /m)	Es (M	lpa)	Ecs (Mpa)	fctm (Mpa	a)	η1	hi (cm)	bi (cm)	Acri	(cm²)
7,85	210.0	000	26.072	2,90		2,25	12,50	10	.00	12	5,00
as	pr	i	ξ	x (cm)	0	rsi (Mpa)	Erro	Wk1	(mm)	Wk	(mm)
8.05	0.00628	33185	0.308	4.62		157.81	0.00	0.0436	72044	0.182	121734

PAR3 – FORÇA E MOMENTO NA DIREÇÃO DE Y




3.4 PAR 4

PAR4 – ENVOLTÓRIA DE CARREGAMENTOS MAX - FORÇAS NA DIREÇÃO DE X (tf/m)


PAR4 - ENVOLTÓRIA DE CARREGAMENTOS MAX - FORÇAS NA DIREÇÃO DE Y (tf/m)

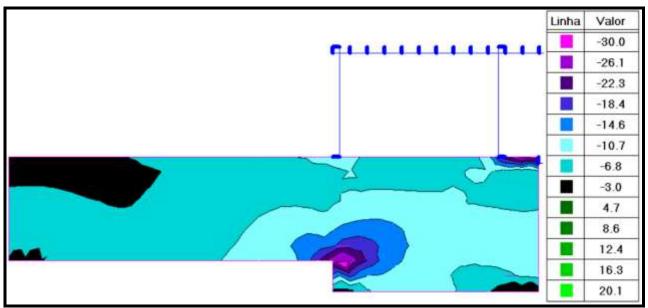
PAR4 – ENVOLTÓRIA DE CARREGAMENTOS MAX - MOMENTO NA DIREÇÃO DE X (tf.m/m)

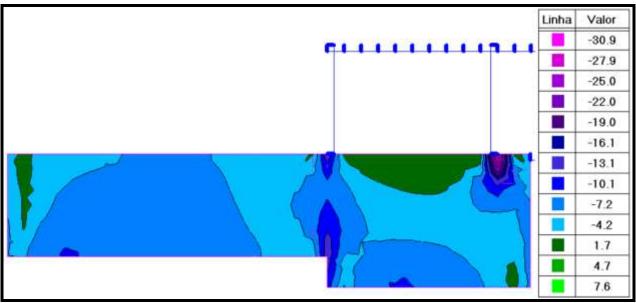
PAR4- ENVOLTÓRIA DE CARREGAMENTOS MAX - MOMENTO NA DIREÇÃO DE Y (tf.m/m)

		Laje	s Macıç	as em Conc	reto A	rmado -	NBR 61	18	admiración.		
Mate	riais	Esf	orços		Seção			SE	GURAN	IÇA	
Aço (fyk)	fck (Mpa)	Mk (tf.m/m)	Nk (tf/m)	h (cm)	d' (cm)	₹max.	As,min (cm²/m)	γο	γs	γ	Classe Agres.
500	30	1,30	5,76	20	4,9	0,5	3,46	1,40	1,15	1,40	Classe IV
			A								
ELI	U - Flexão C	omposta -	Arm. Assim								
Armadura	necessária	Φ (mm)	Esp. (cm)	As.tet (cm²/m)							
Ast	4						Resumo - I	ELU			
(cm²/m)	1-	8	10,0	5,03		Zona	ξ	W1	W2		
As2 (cm*/m)	1,64	8	10,0	5,03		Zona D	0,069	0,000	0,026		
Verifi	cação Fiss	suras - L	AJES - FL	EXÃO COMP	POSTA	ARM. SII	MPLES- C	ONCR	ETO	ARMA	DO
h	Materiais		E	sforços		THE CONTRACT		Seção			
Aço (fyk)) fck (f	Лра)	Mfr (tf.m/m)	Nfr (tf/m)	h (cm)	d' (cm)	Bito	ia ø	Esp	. (cm)
500	30		1,3	5,76		20	4,9	1	В	1	0,0
				Cál	culo						
As (cm³/m	n) Es (M	(pa)	Ecs (Mpa)	fctm (Mp	a)	n1	hi (cm)	bi (cm)	Acr	i (cm²)
5,03	210	000	26.072	2,90		2,25	10,90	10	,00	16	9,00
as	pi	i	ξ	x (cm)	0	si (Mpa)	Erro	Wkt	(mm)	Wk	2 (mm)
8.05	0.0046	11519	0.277	4,18		116.76	0.00	0.0191	25767	0.14/	1296198

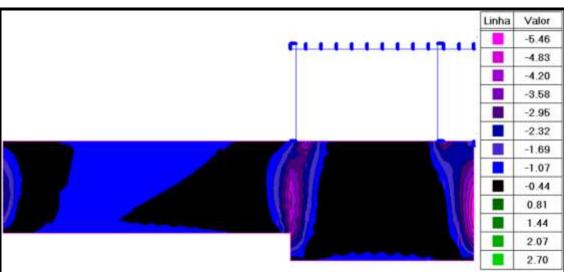
PAR4 – FORÇA E MOMENTO NA DIREÇÃO DE X

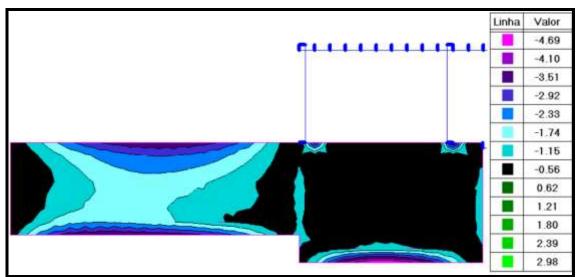
Mater	riais	Est	forços	- 1	Seção			SE	GURAN	ICA	
Aço (fyk)	fck (Mpa)	Mk (tf.m/m)	Nk	h (cm)	d' (cm)	ξmix.	As,min (cm²/m)	γc	γs	γı	Classe Agres.
500	30	2,46	7,94	20	5,0	0,5	3,46	1,40	1,15	1,40	Classe IV
FLU	- Flexão C	omposta -	Arm. Assim	étrica							
			Arranio	NAME AND ADDRESS OF THE PARTY O							
Armadura n	ecessaria	@ (mm)	Esp. (cm)	As tot (cm²/m)							
Ast	100	10	10.0	7.00			Resumo - I	ELU			
(cm*/m)		10	10,0	7,85		Zona	ξ	wt	w2		
As2 (cm ⁹ /m)	3,91	10	10,0	7,85		Zona D	0,129	0,000	0,062		
Verific	ação Fiss	suras - L	AJES - FL	EXÃO COMP	OSTA	- ARM. SII	MPLES- C	ONCR	ETO /	ARMA	DO
	lateriais	-		sforços				Seção			
Aço (fyk)	fck (f	Mpa)	Mfr (tf.m/m)	Nfr (tf/m)	h (cm)	ď (cm)	Bito	la ø	Esp	. (cm)
500	30)	2,46	7,94		20	5	1	0	1	0,0
	- 75	- 17		Cále	cuto	- 17			- 170		
As (cm²/m) Es (N	(pa)	Ecs (Mpa)	fctm (Mp	a)	η1	hi (cm)	bi (cm)	Acri	(cm²)
7,85	210	000	26.072	2,90	**	2,25	12,50	10	00	12	5.00
OS.	PI	i	ξ	x (cm)		rsi (Mpa)	Erro	Wkt	(mm)	Wk2	(mm)
8.05	0.0062	02406	0.306	4,59		168,95	0.00	0.0500	56522	0.104	980129




PAR4 – FORÇA E MOMENTO NA DIREÇÃO DE Y

3.5 PAREDE 5 = PAREDE 7

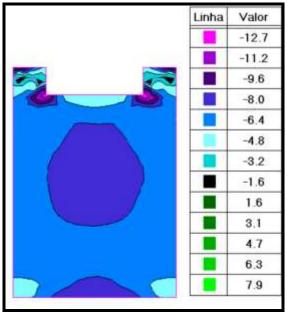

PAREDE 05=PAREDE 07 – ENVOLTÓRIA DE CARREGAMENTOS MAX - FORÇAS NA DIREÇÃO DE X (tf/m)


PAREDE 05=PAREDE 07 – ENVOLTÓRIA DE CARREGAMENTOS MIN - FORÇAS NA DIREÇÃO DE Y (tf/m)

PAREDE 05=PAREDE 07 – ENVOLTÓRIA DE CARREGAMENTOS MAX - MOMENTO NA DIREÇÃO DE X (tf.m/m)

PAREDE 05=PAREDE 07 – ENVOLTÓRIA DE CAREGAMENTOS MAX - MOMENTO NA DIREÇÃO DE Y (tf.m/m)

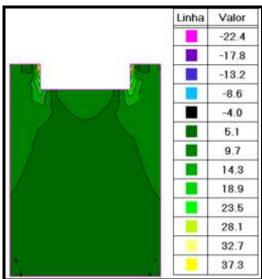
		Laje	s Maciç	as em Conc	reto A	rmado -	NBR 61	18			
Mater	iais	Est	orços	4	Seção			SE	GURAN	IÇA .	
Aço (fyk)	fck (Mpa)	Mk (tf.m/m)	Nk (tf/m)	h (cm)	d' (cm)	ξ máx.	As,min (cm²/m)	γc	γs	γr	Classe Agres.
500	30	1,69	18,40	20	4,9	0,5	3,46	1,40	1,15	1,40	Classe I\
E111	Florito C		Arms Analus	Atrica							
ELU	- Flexao C	omposta -	Arm. Assim Arranjo								
Armadura n	ecessária	(mm)	Esp. (cm)	As not (cm²/m)							
Ast		0.121	Lap. (cm)	1423,411		ŧ.	Resumo - I	ELU			
(cm²/m)	2	8	10,0	5,03		Zona	ξ	wi	ω2		
As 2 (cm²/m)	3	8	10,0	5,03		Zona O	(#3	0,000	0,000		
Verific	ação Fiss	uras - L	AJES - FL	EXÃO COMP	OSTA -	ARM. SII	MPLES- C	ONCR	ETO /	RMA	DO
	teriais			sforços				eção			
Aço (fyk)	fck (N	(pa)	Mfr (tf.m/m)	Nfr (tf/m)	h (cm)	d' (cm)	Bito	la o	Esp	(cm)
500	30)	1,69	18,4		20	4,9	8		1	0,0
				Cáic	ulo						
As (cm ¹ /m)	Es (N	lpa)	Ecs (Mpa)	fctm (Mpa	1)	ηt	hi (cm)	bi (c	:m)	Acri	(cm²)
5,03	210.0	000	26.072	2,90		2,25	10,90	10.	00	10	9,00
CIS.	pr	1	Ę	x (cm)	σ	si (Mpa)	Erro	Wkt (mm)	Wk	(mm)
8.05	0,0046	11512	0.488	7,37		47,58	0.00	0,0031	75428	0.058	795838

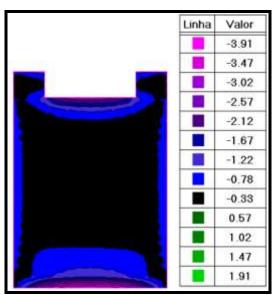

PAREDE 05=PAREDE 07 – FORÇA E MOMENTO NA DIREÇÃO DE X

		Laje	s Maciça	as em Conc	reto A	rmado -	NBR 61	18			
Materi	fck Mk Nk (Mpa) (tf.m/m) (tf/m) 30 3,51 16,00 - Flexão Composta - Arm. Assimentes Arranjo				Seção		SEGURANÇA				
Aço (fyk)	2000	1000	13331	h (cm)	d* (cm)	ξmāx.	As,min (cm²/m)	γc	γ,	γι	Classe Agres.
500	30	3,51	16,00	20	5,1	0,5	3,46	1,40	1,15	1,40	Classe I
		NAME OF STREET									
ELU	- Flexao Co	omposta -									
Armadura ne	ecessária	(D) (mm)		As tot (cm²/m)							
		4 (min)	esp. (cm)	Major (Citi-1111)			Resumo - I	E1.11			
As1 (cm²/m)	-	12,5	10,0	12,27		Zona	ξ	ωτ	tui2		
As2 (cm*/m)	4,95	12,5	10,0	12,27		Zona D	0,203	0,000	0,079		
Verifica	ação Fiss	uras - L	AJES - FL	EXÃO COMP	OSTA	- ARM. SII	MPLES- C	ONCR	ETO A	RMA	DO
Ma	teriais		E	sforços				Seção			
Aço (fyk)	fck (N	lpa)	Mfr (tf.m/m)	Nfr (tf/m)	h (cm)	d' (cm)	Bitol	la ø	Esp	. (cm)
500	30		3,51	16		20	5,125	12.	5	- 3	0,0
	- 33			Calc	culo	- 77					- 3
As (cm²/m)	Es (M	ipa)	Ecs (Mpa)	fctm (Mp	a)	η1	hi (cm)	bi (c	:m)	Acr	(cm²)
12,27	210.0	000	26.072	2,90	HEAT OF THE PARTY	2,25	14,50	10,	00	14	5,00
as	pr		Ę	x (cm)	0	rsi (Mpa)	Erro	Wkt (mm)	Wk	(mm)
8.05	0.00846	22242	0.394	5,86	1100	140,18	0,00	0,0430	77645	0.453	573114

PAREDE 05=PAREDE 07- FORÇA E MOMENTO NA DIREÇÃO DE Y

3.6 FUNDO




FUNDO – ENVOLTÓRIA DE CARREGAMENTOS MAX - FORÇAS NA DIREÇÃO DE X (tf/m)

FUNDO - ENVOLTÓRIA DE CARREGAMENTOS MIN - FORÇAS NA DIREÇÃO DE Y (tf/m)

FUNDO – ENVOLTÓRIA DE CARREGAMENTOS MAX - MOMENTO NA DIREÇÃO DE X (tf.m/m)

Linha	Valor
	-3.91
	-3.47
	-3.02
	-2.57
	-2.12
-	-1.67
	-1.22
	-0.78
	-0.33
	0.57
	1.02
	1.47
	1.91

FUNDO – ENVOLTÓRIA DE CARREGAMENTOS MIN - MOMENTO NA DIREÇÃO DE Y (tf.m/m)

	Lajes Maciças em Concreto Armado - NBR 6118												
Materiais Esforços Seção SEGUI					GURAN	IÇA							
Aço	fck	Mk	Nk	h	d'	C ź	As,mín				Classe		
(fyk)	(Mpa)	(tf.m/m)	(tf/m)	(cm)	(cm)	ξ máx.	(cm²/m)	γc	γs	γ_{f}	Agres.		
500	30	2,07	21,80	20	4,9	0,5	3,46	1,40	1,15	1,40	Classe IV		

ELU	ELU - Flexão Composta - Arm. Assimétrica											
Armadura	nococcário	Arranjo										
Armauura	Hecessaria	Φ (mm)	As,tot (cm ² /m)									
As 1 (cm²/m)	-	8	10,0	5,03								
As 2 (cm²/m)	0,17	8	10,0	5,03								

Resumo - ELU										
Zona	ξ	ω1								
Zona D	0,142	0,000	0,003							

Verificaç	Verificação Fissuras - LAJES - FLEXÃO COMPOSTA - ARM. SIMPLES- CONCRETO ARMADO											
Mate	Materiais Esforços Seção											
Aço (fyk)	fck (Mpa)	Mfr (tf.m/m)	Nfr (tf/m)	h (cm) d' (cm) Bitola ø Esp. (cm)								
500	30	2,07	21,8	20	4,9	8	10,0					
	Cálculo											
As (cm²/m)	Es (Mpa)	Ecs (Mpa)	fctm (Mpa)	η1	hi (cm)	bi (cm)	Acri (cm²)					
5,03	210.000	26.072	2,90	2,25	10,90	10,00	109,00					
αs	ρri	ξ	x (cm)	σsi (Mpa)	Erro	Wk1 (mm)	Wk2 (mm)					
8,05	0,004611512	0,471	7,11	63,58	0,00	0,005671756	0,078578593					

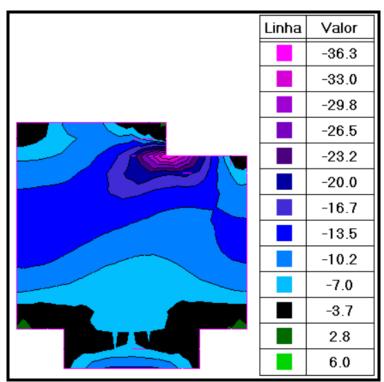
FUNDO – FORÇA E MOMENTO NA DIREÇÃO DE X

	Lajes Maciças em Concreto Armado - NBR 6118												
Mate	riais	Esfo	rços	Seção			SEGURANÇA						
Aço	fck	Mk	Nk	h	ď'	Cź	As,mín	,	•	V.	Classe		
(fyk)	(Mpa)	(tf.m/m)	(tf/m)	(cm)	(cm)	ξ máx.	(cm²/m)	γc	γs	Ϋ́t	Agres.		
500	30	2,12	14,30	20	5,0	0,5	3,46	1,40	1,15	1,40	Classe IV		

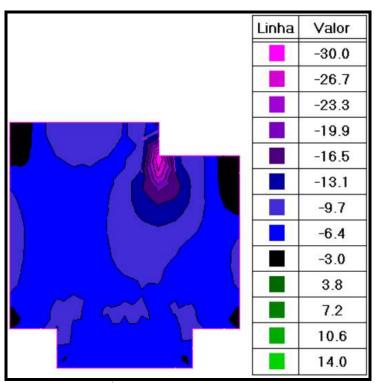
ELU	ELU - Flexão Composta - Arm. Assimétrica											
Armadura	nococório		Arranjo	0								
Armadura	necessaria	Φ (mm)	Esp. (cm)	As,tot (cm ² /m)								
As 1 (cm²/m)	-	10	12,0	6,54								
As 2 (cm²/m)	1,81	10	12,0	6,54								

Resumo - ELU										
Zona	ξ	ω1	ω 2							
Zona D	0,128	0,000	0,029							

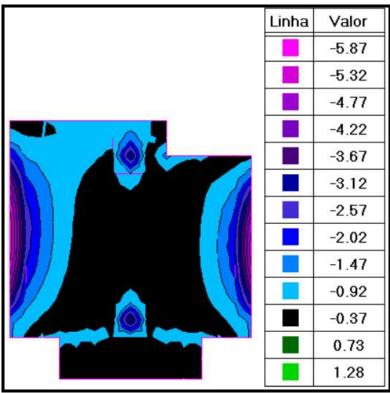
Verificaç	Verificação Fissuras - LAJES - FLEXÃO COMPOSTA - ARM. SIMPLES- CONCRETO ARMADO											
Mate	riais	Esfo	rços	Seção								
Aço (fyk)	fck (Mpa)	Mfr (tf.m/m)	Nfr (tf/m)	h (cm) d' (cm) Bitola ø Esp. (cm)								
500	30	2,12	14,3	20	5	10	12,0					
	Cálculo											
As (cm²/m)	Es (Mpa)	Ecs (Mpa)	fctm (Mpa)	η1	hi (cm)	bi (cm)	Acri (cm²)					
6,54	210.000	26.072	2,90	2,25	12,50	12,00	150,00					
αs	ρri	ξ	x (cm)	σsi (Mpa)	Erro	Wk1 (mm)	Wk2 (mm)					
8,05	0,005235988	0,365	5,47	110,26	0,00	0,021320974	0,15102181					

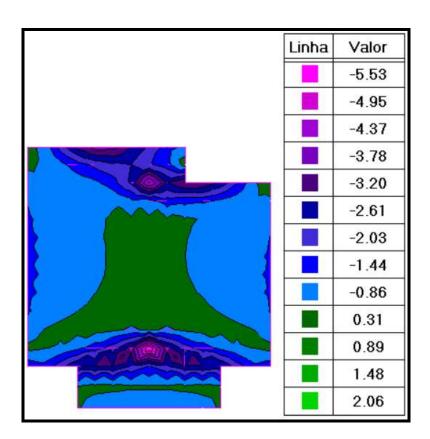

FUNDO – FORÇA E MOMENTO NA DIREÇÃO DE Y

Tel: +55 (27) 3060-8013 / +55 (27) 3060-8208



3.7 FUNDO 02


FUNDO 02 - ENVOLTÓRIA DE CARREGAMENTOS MAX - FORÇAS NA DIREÇÃO DE X (tf/m)


FUNDO 02 – ENVOLTÓRIA DE CARREGAMENTOS MAX - FORÇAS NA DIREÇÃO DE Y (tf/m)

FUNDO 02 – ENVOLTÓRIA DE CARREGAMENTOS MAX - MOMENTO NA DIREÇÃO DE X (tf.m/m)

FUNDO 02 - ENVOLTÓRIA DE CARREGAMENTOS MAX - MOMENTO NA DIREÇÃO DE Y (tf.m/m)

	Lajes Maciças em Concreto Armado - NBR 6118												
Mate	riais	Esfo	rços	Seção			SEGURANÇA						
Aço	fck	Mk	Nk	h	d'	ξ máx.	As,mín	•	,	V f	Classe		
(fyk)	(Mpa)	(tf.m/m)	(tf/m)	(cm)	(cm)	ςmax.	(cm²/m)	γc	γs	γt	Agres.		
500	30	4,22	16,50	20	5,1	0,5	3,46	1,40	1,15	1,40	Classe IV		

ELU - Flexão Composta - Arm. Assimétrica								
Armadura	nococcário	Arranjo						
Armauura	Hecessaria	Φ (mm) Esp. (cm) As ,tot (cm ² /						
As 1 (cm²/m)	-	12,5	10,0	12,27				
As 2 (cm²/m)	6,73	12,5	10,0	12,27				

Resumo - ELU						
Zona ξ ω1 ω2						
Zona D	0,241	0,000	0,108			

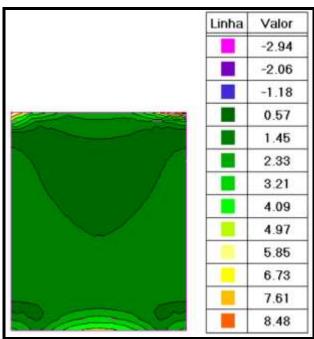
Verificação Fissuras - LAJES - FLEXÃO COMPOSTA - ARM. SIMPLES- CONCRETO ARMADO									
Materiais Esforços				Seção					
Aço (fyk)	fck (Mpa)	Mfr (tf.m/m)	Mfr (tf.m/m) Nfr (tf/m) h (cm) d' (cm) Bitola ø Es						
500	30	4,22	16,5	20	5,125	12,5	10,0		
			Cálculo						
As (cm²/m)	Es (Mpa)	Ecs (Mpa)	fctm (Mpa)	η1	hi (cm)	bi (cm)	Acri (cm²)		
12,27	210.000	26.072	2,90	2,25	14,50	10,00	145,00		
αs	αs ρri ξ x (cm) σsi (Mpa) Erro Wk1 (mm) Wk2 (mm)								
8,05	0,008463342	0,379	5,64	180,63	0,00	0,071519087	0,19787929		

FUNDO 02 – FORÇA E MOMENTO NA DIREÇÃO DE X

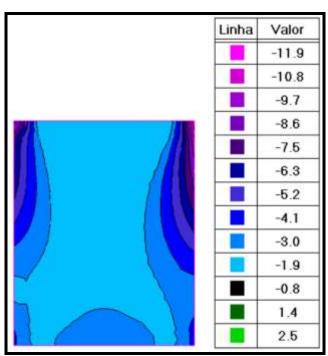
Lajes Maciças em Concreto Armado - NBR 6118											
Mate	Materiais Esforços Seção SEGURANÇA										
Aço	fck	Mk	Nk	h	d'	c	As,mín			Classe	
(fyk)	(Mpa)	(tf.m/m)	(tf/m)	(cm)	(cm)	ξ máx.	(cm²/m)	γc	γs	γ_{f}	Agres.
500	30	4,37	19,90	20	5,1	0,5	3,46	1,40	1,15	1,40	Classe IV

ELU - Flexão Composta - Arm. Assimétrica								
Armadura	nacanária	Arranjo						
Armadura	necessaria	Φ (mm)	Esp. (cm)	As,tot (cm²/m)				
As 1 (cm²/m)	ı	12,5	10,0	12,27				
As 2 (cm²/m)	6,49	12,5	10,0	12,27				

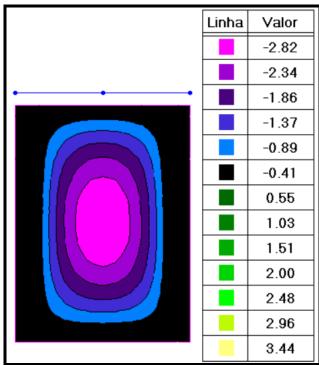
Resumo - ELU						
Zona	ξ	ω1	ω 2			
Zona D	0,259	0,000	0,104			


Verificação Fissuras - LAJES - FLEXÃO COMPOSTA - ARM. SIMPLES- CONCRETO ARMADO								
Mate	Materiais Esforços			Seção				
Aço (fyk)	fck (Mpa)	Mfr (tf.m/m)	Mfr (tf.m/m) Nfr (tf/m) h (cm) d' (cm) Bitola ø					
500	30	4,37	19,9	20	5,125	12,5	10,0	
			Cálculo					
As (cm²/m)	As (cm²/m) Es (Mpa) Ecs (Mpa) fctm (Mpa) η1 hi (cm) bi (cm) Acri (cm²							
12,27	210.000	26.072	2,90	2,25	14,50	10,00	145,00	
αs	ρri	ξ	x (cm)	σsi (Mpa)	Erro	Wk1 (mm)	Wk2 (mm)	
8,05	0,008463342	0,394	5,86	174,62	0,00	0,066840673	0,191297709	

FUNDO 02 – FORÇA E MOMENTO NA DIREÇÃO DE Y



3.8 TAMPA


TAMPA – ENVOLTÓRIA DE CARREGAMENTOS MAX - FORÇAS NA DIREÇÃO DE X (tf/m)

TAMPA – ENVOLTÓRIA DE CARREGAMENTOS MAX - FORÇAS NA DIREÇÃO DE Y (tf/m)

TAMPA – ENVOLTÓRIA DE CARREGAMENTOS MAX - MOMENTO NA DIREÇÃO DE X (tf.m/m)

Linha	Valor
	-1.70
	-1.35
	-1.00
	-0.65
	-0.29
	0.41
	0.76
	1.11
	1.46
	1.81
	2.16
	2.51
	2.86

TAMPA - ENVOLTÓRIA DE CARREGAMENTOS MAX - MOMENTO NA DIREÇÃO DE Y (tf.m/m)

Lajes Maciças em Concreto Armado - NBR 6118														
Mate	riais	Esfo	rços	Seção		Seção		Seçâ			SE	GURAN	IÇA	
Aço	fck	Mk	Nk	h	d'	€ máx.	As,mín			7/4	Classe			
(fyk)	(Mpa)	(tf.m/m)	(tf/m)	(cm)	(cm)	ςmax.	(cm²/m)	γc	γs	γt	Agres.			
500	30	2,34	5,85	20	5,0	0,5	3,46	1,40	1,15	1,40	Classe IV			

ELU - Flexão Composta - Arm. Assimétrica							
Armodura	nococcário		Arranjo)			
Armadura necessária		Φ (mm)	Esp. (cm)	As,tot (cm ² /m)			
As 1 (cm²/m)	1	10	10,0	7,85			
As 2 (cm²/m)	4,05	10	10,0	7,85			

Resumo - ELU					
Zona	ξ	ω1	ω 2		
Zona D	0,118	0,000	0,064		

Verificaç	Verificação Fissuras - LAJES - FLEXÃO COMPOSTA - ARM. SIMPLES- CONCRETO ARMADO								
Mate	Materiais Esforços				S	eção			
Aço (fyk)	fck (Mpa)	Mfr (tf.m/m)	Nfr (tf/m)	h (cm)	d' (cm)	Bitola ø	Esp. (cm)		
500	30	2,34	5,85	20	5	10	10,0		
			Cálculo						
As (cm²/m)	Es (Mpa)	Ecs (Mpa)	fctm (Mpa)	η1	hi (cm)	bi (cm)	Acri (cm²)		
7,85	210.000	26.072	2,90	2,25	12,50	10,00	125,00		
αs	ρri	ξ	x (cm)	σsi (Mpa)	Erro	Wk1 (mm)	Wk2 (mm)		
8,05	0,006283185	0,292	4,38	173,08	0,00	0,052535559	0,199749957		

TAMPA – FORÇA E MOMENTO NA DIREÇÃO DE X

	Lajes Maciças em Concreto Armado - NBR 6118										
Materiais		Esforços		Seção			SE	GURAN	NÇA		
Aço	fck	Mk	Nk	h	d'	ξ máx.	As,mín		,	N/s	Classe
(fyk)	(Mpa)	(tf.m/m)	(tf/m)	(cm)	(cm)	ςmax.	(cm²/m)	γc	γs	γt	Agres.
500	30	1,35	3,00	20	4,9	0,5	3,46	1,40	1,15	1,40	Classe IV

ELU - Flexão Composta - Arm. Assimétrica							
Armadura	nacacária		Arranjo)			
Armadura necessária		Φ (mm)	Esp. (cm)	As,tot (cm ² /m)			
As 1 (cm²/m)	-	8	10,0	5,03			
As 2 (cm²/m)	2,32	8	10,0	5,03			

Resumo - ELU					
Zona ξ ω1 ω2					
Zona D	0,065	0,000	0,037		

Verificaç	Verificação Fissuras - LAJES - FLEXÃO COMPOSTA - ARM. SIMPLES- CONCRETO ARMADO								
Mate	Materiais Esforços			Seção					
Aço (fyk)	fck (Mpa)	Mfr (tf.m/m)	Nfr (tf/m)	h (cm)	d' (cm)	Bitola ø	Esp. (cm)		
500	30	1,35	3	20	4,9	8	10,0		
			Cálculo						
As (cm²/m)	Es (Mpa)	Ecs (Mpa)	fctm (Mpa)	η1	hi (cm)	bi (cm)	Acri (cm²)		
5,03	210.000	26.072	2,90	2,25	10,90	10,00	109,00		
αs	ρri	ξ	x (cm)	σsi (Mpa)	Erro	Wk1 (mm)	Wk2 (mm)		
8,05	0,004611512	0,238	3,59	155,39	0,00	0,033874596	0,192035942		

TAMPA – FORÇA E MOMENTO NA DIREÇÃO DE Y

weter tophallibre without

CARLOS RAPHAEL MONTEIRO DE LEMOS

CREA-ES 011840/D

Resumo Estrutural por Elementos

RESUMO ESTRUTURAL POR ELEMENTOS

RAP 150m3
- Fck = 30 MPa

PILAR

3,50

46,00

LAJES

9,00

63,00

VIGAS

4,50

49,00

TOTAL

97,50

699,00

VERTEDOURO

6,00

68,00

ESTAÇÃO ELEVATÓRIA							
			STRUTURAL				
	TAMPA	PAREDES	FUNDO				
VOLUME (m³)	1,00	46,00	27,50				
FÔRMA (m²)	7,00	450,00	16,00				
CONCRETO D	E REGULARIZ	AÇÃO - Fck = :	15 MPa				
VOLUME (m³)		6,70					
	TAMPA	4					
AÇO	BIT (mm)	COMPR (m)	PESO (kg)				
50A	8	1467	587				
50A	10	1427	899				
TOTA	L	2894	1486				
	PAREDE	S					
AÇO	BIT (mm)	COMPR (m)	PESO (kg)				
50A	8	4883	1953				
50A	10	4910	3094				
50A	12.5	3270	3270				
TOTA	L	13063	8317				
	VIGAS						
AÇO	BIT (mm)	COMPR (m)	PESO (kg)				
60B	5	306	49				
50A	6.3	68	17				
50A	10	143	90				
50A	12.5	105	105				
50A	16	75	120				
TOTA	L	697	381				
	PILAR						
AÇO	BIT (mm)	COMPR (m)	PESO (kg)				
60B	5	338	54				
50A	12.5	254	254				
50A	16	68	108				
TOTA	L	660	416				
	FUNDO						
AÇO	BIT (mm)	COMPR (m)	PESO (kg)				
60B	5	680	109				
50A	6.3	123	31				
50A	8	5423	2169				
50A	10	113	71				
50A	12.5	318	318				

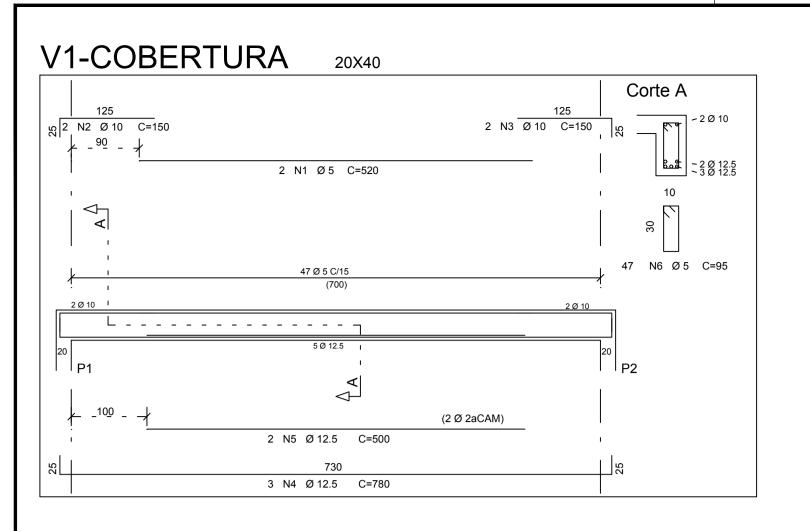
TOTAL

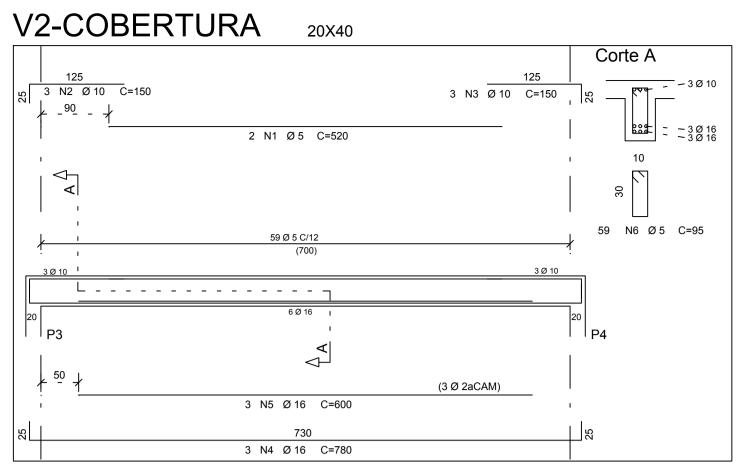
6657

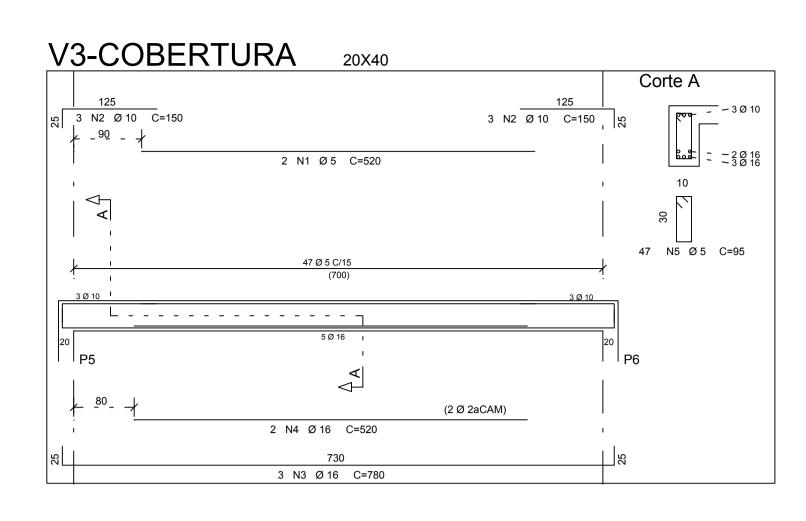
2698

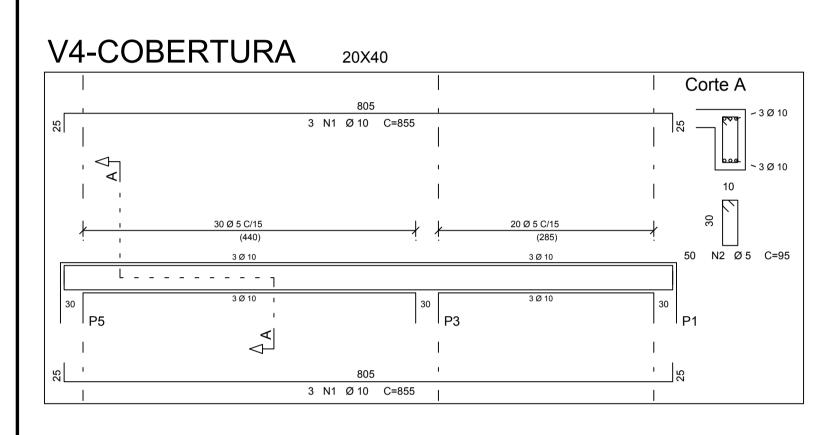
LAJES							
AÇO	BIT (mm)	COMPR (m)	PESO (kg)				
50A	8	903	361				
TOTAL	L	903	361				
	VERTEDO	JRO					
AÇO	BIT (mm)	COMPR (m)	PESO (kg)				
60B	8	1141	456				
50A	10	919	579				
TOTAL		2060	1035				

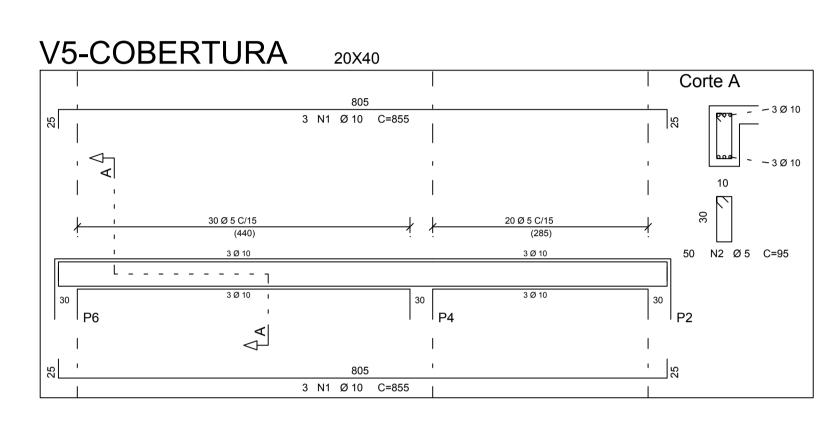
CARLOS RAPHAEL MONTEIRO DE LEMOS CREA-ES 011840/D

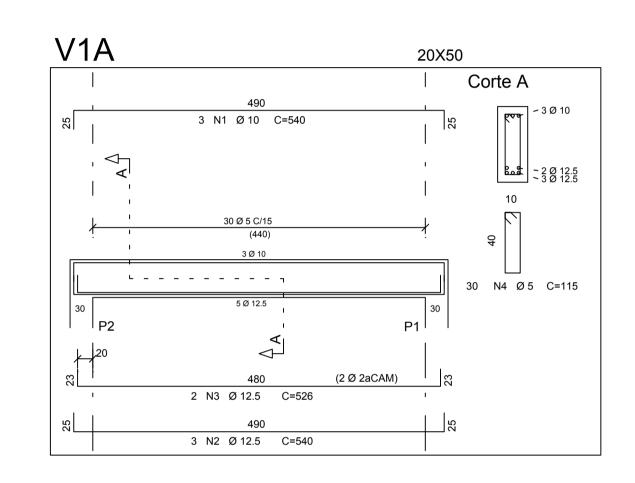

Peças Gráficas

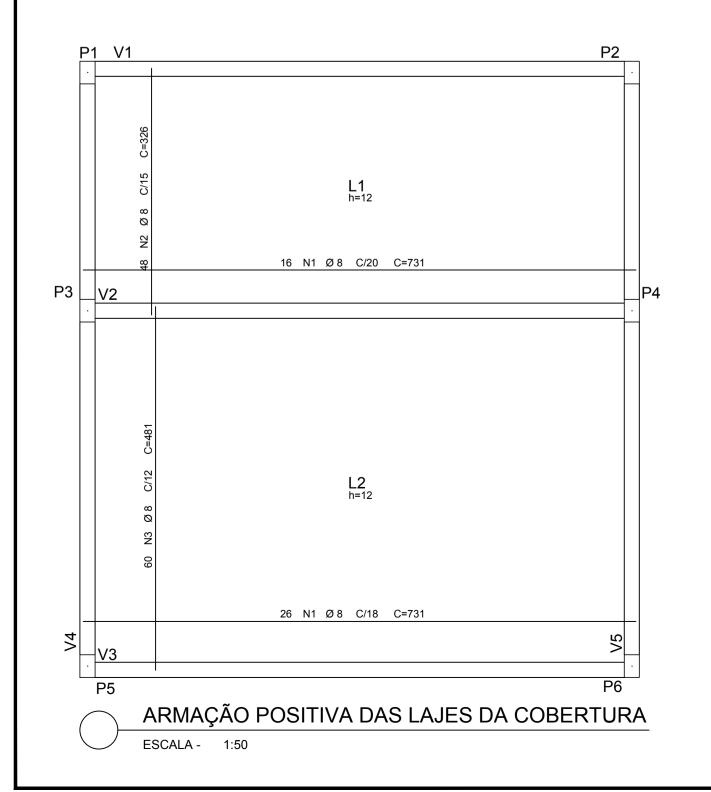


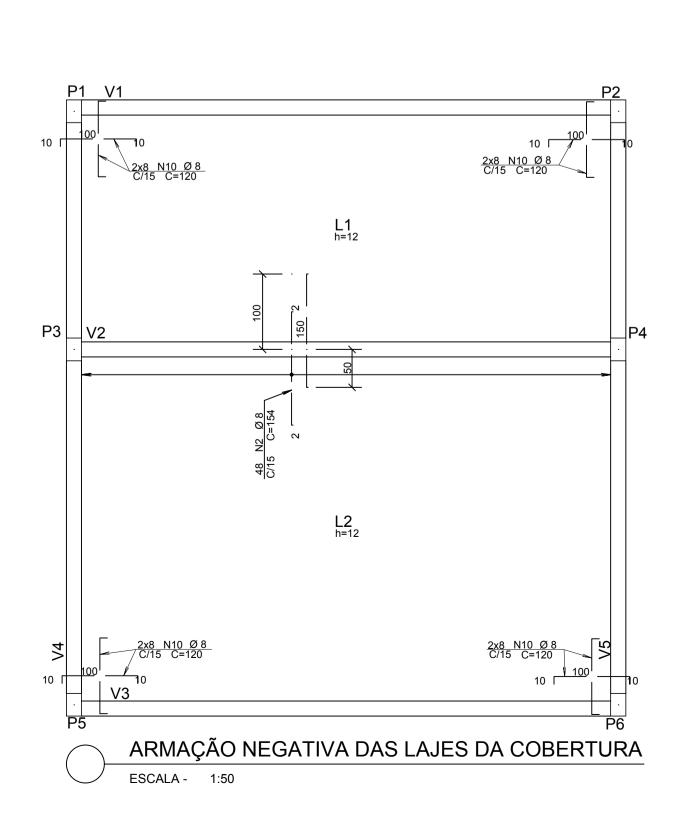

PEÇAS GRÁFICAS


Relação de Plantas:


	ESTAÇÃO ELEVATÓRIA DE ÁGUA/ RAP 150m³							
DESENHO:	PRANCHA:	TÍTULO:						
01	01/06	Projeto Estrutural – Estação Elevatória/ RAP 150m³ – Planta Baixa Níveis: +88.900, +92.270, +95.600 e Vertedouro						
01	02/06	Projeto Estrutural – Estação Elevatória/ RAP 150m³ – Cortes: A-A, B-B, C-C, D-D e Corte A-A do Vertedouro						
01	03/06	Projeto Estrutural – Estação Elevatória/ RAP 150m³ – Armação: do Fundo, da Tampa do Reservatório, do Vertedouro e Detalhes de Ligação Parede-parede						
01	04/06	Projeto Estrutural – Estação Elevatória/ RAP 150m³ – Armação das Paredes e Detalhes de Ligação Parede-parede						
01	05/06	Projeto Estrutural – Estação Elevatória/ RAP 150m³ – Armações: Piso do Térreo, Cintas, Pilares, Sapatas e Parede 7						
01	06/06	Projeto Estrutural – Estação Elevatória/ RAP 150m³ – Armações: Positiva e Negativa das Lajes, das Vigas e Formas D						







	AÇO	POS	BIT	QUANT	COMPF	RIMENTO
			(mm)		UNIT	TOTAL
					(cm)	(cm)
V1A-PA	AVSUPER	IOR			, ,	
	50A	1	10	3	540	1620
	50A	2	12.5	3	540	1620
	50A	3	12.5	2	526	1052
	60B	4	5	30	115	3450
V1-CO	BERTURA	١				
	60B	1	5	2	520	1040
	50A	2	10	2	150	300
	50A	3	10	2	150	300
	50A	4	12.5	3	780 500	2340
	50A 60B	5 6	12.5	2 47	500	1000 4465
V2 CO			5	47	95	4405
۷2-CO آ	BERTURA				F20	1040
	60B 50A	1 2	5 10	3	520 150	1040 450
	50A 50A	3	10	3	150	450 450
	50A	4	16	3	780	2340
	50A	5	16	3	600	1800
	60B	6	5	59	95	5605
V3-CO	BERTURA					0000
	60B	1	5	2	520	1040
	50A	2	10	6	150	900
	50A	3	16	3	780	2340
	50A	4	16	2	520	1040
	60B	5	5	47	95	4465
V4-CO	BERTURA	\				
	50A	1	10	6	855	5130
	60B	2	5	50	95	4750
V5-CO	BERTURA	1				
	50A	1	10	6	855	5130
	60B	2	5	50	95	4750
ARMA	ÇÃO NEG	ATIVA DA	S LAJES D	A COBER	TURA	
	50A	2	8	48	154	7392
	50A	10	8	64	120	7680
ARMA	ÇÃO POSI	TIVA DAS	LAJES DA	COBERT	TURA	
	50A	1	8	42	731	30702
	50A	2	8	48	326	15648
	50A	3	8	60	481	28860
		RESUN	10 AÇO CA	50-60		
	AÇO	BIT	COM		F	PESO
	3 -	(mm)	(m)			kg)
6	0B	5	306		 	49
	0A	8	903			361
	0A	10	143			90
	0A	12.5	60			60
	0A	16	75			120
Peso		60B =			49 kg	

NOTAS :	
1 — Cotas e Dimensões em cm.	Lajes: 5.0cm Sapatas: 5.0cm
2 — Concreto : Fck = 30MPa	Pilares: 5.0cm Vigas: 5.0cm
Módulo de Elasticidade : Ecs = 26GPa	Blocos: 5.0cm Tubulão: 5.0cm
Fator Água Cimento : A/C <=0.45	Radier: 5.0cm
Consumo de Cimento : 350Kgf/m3	13 — Norma de fôrmas e escoramentos :NBR 15696/2009
- Aços : CA-50 - Fyk = 500 MPa	Fôrmas e escoramentos para estruturas de concreto
CA-60 - Fyk = 600 MPa	Projeto,dimensionamneto e procedimentos executivos
— Concreto de regularização:	14 — Norma de Cargas : NBR 6120/1980
Módulo de Elasticidade : Ecs = 18.5GPa	Cargas para Cálculo de Estruturas em Edificações
Espessura : 5.0cm	15 — Norma de Cálculo : NBR 6118/2014
Consumo de Cimento : 250Kgf/m3	Projeto de Estruturas de Concreto—Procedimento
— As cotas prevalecem sobre o desenho	16 — Norma de Fundações : NBR 6122/2010
— Classe de Agressividade Ambiental = Iv	Projeto e execução de fundações
- Fator do Terreno: S1 = 1.0	17 — Norma de incêndio em concreto : NBR 15200/2012
- Categoria de Rugosidade:S2 = II	Projeto de estruturas de concreto em situação de incêndio
- Classe da Edificação: A	18 — Norma de execução de concreto : NBR 14931/2004
) — Fator Estatístico: S3 = 1.00	Execução de estruturas de concreto — Procedimento
11 — Velocidade Básica do Vento:V = 30m/s	19 — As normas citadas acima devem ser seguidas
12 — Cobrimento das Armaduras :	tanto na elaboração dos projetos quanto na execução das obras

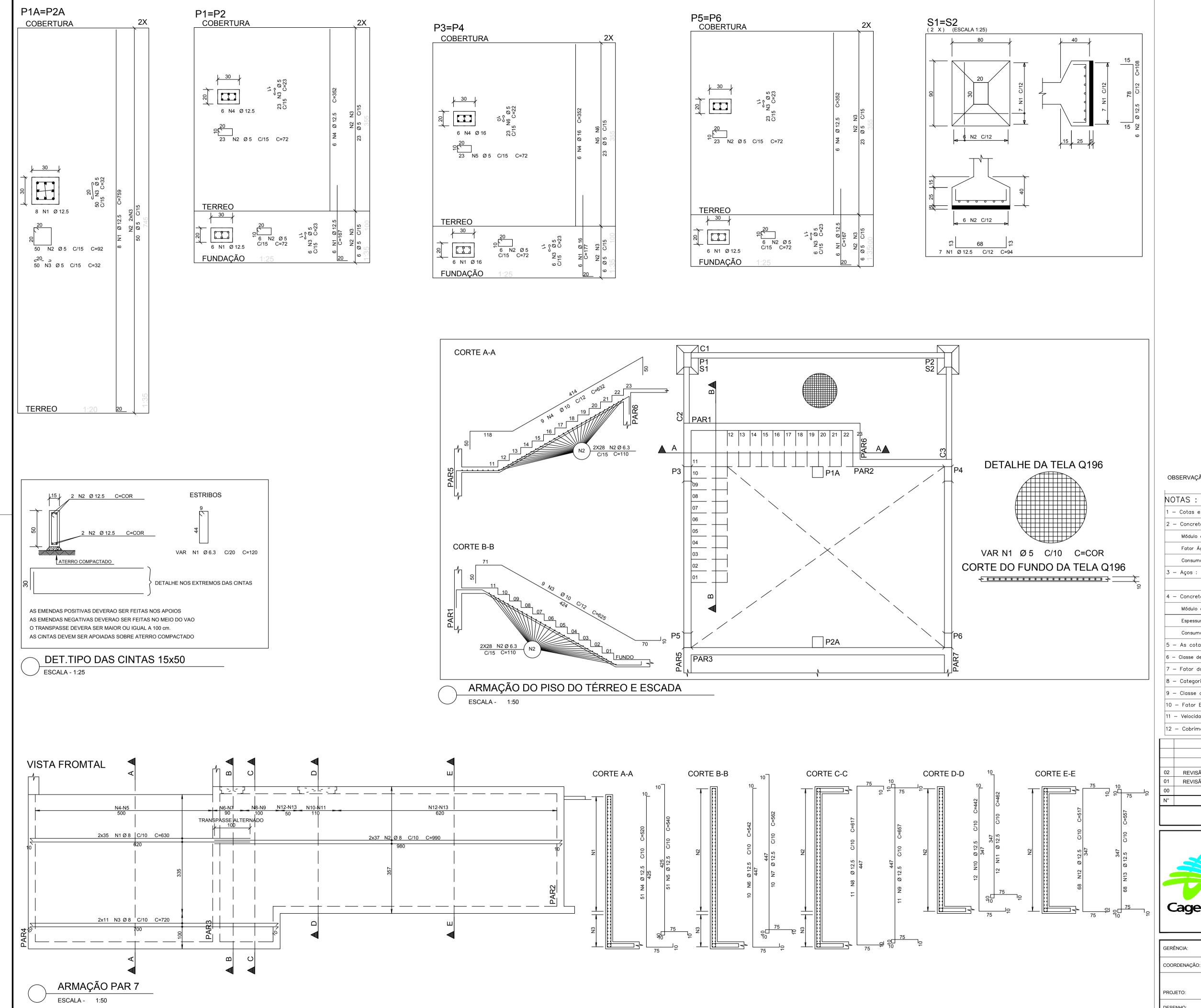
REVISÃO CONFORME RELATÓRIO DE ANÁLISE	03/09/2020	CARLOS RAPHAEL	EQUIPE ML		
REVISÃO CONFORME RELATÓRIO DE ANÁLISE	22/05/2020	CARLOS RAPHAEL	EQUIPE ML		
EMISSÃO INICIAL	01/08/2018	CARLOS RAPHAEL	EQUIPE ML		
DESCRIÇÃO	DATA	PROJETADO	DESENHADO		
~ .					

REVISÃO

COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ
DIRETORIA DE ENGENHARIA
GERÊNCIA DE PROJETOS DE ENGENHARIA

DESENHO
PRANCHA N°
06/06

SISTEMA DE ABASTECIMENTO DE ÁGUA ITAPIPOCA


PROJETO BÁSICO

PROJETO ESTRUTURAL

ESTAÇÃO ELEVATÓRIA / RAP 150m3

ARMAÇÕES: POSITIVA E NEGATIVA DAS LAJES, DAS VIGAS E
FORMAS D

GERÊNCIA:	GERÊNCIA DE PROJETOS DE ENGENHARIA				
COORDENAÇÃO:	GPROJ TEC - ENG. CELSO LIRA XIMENES JÚNIOR - CREA 0611862050				
PROJETO:	ENG° CARLOS RAPHAEL MONTEIRO DE LEMOS - CREA/ES: 011840/D				
DESENHO:	EQUIPE ML	ESCALA:	INDICADA		
ARQUIVO:	0580ST-006-EST-R02.DWG	DATA:	SETEMBRO/2020		

	AÇO	POS	BIT	QUANT	COMPR	RIMENTO
	_		(mm)		UNIT	TOTAL
			, ,		(cm)	(cm)
P1=P2	(X2)				(0)	(0)
2	50A	1	12.5	12	167	2004
	60B	2	5	64	72	4608
	60B	3	5	64	23	1472
	50A	4	12.5	12	387	4644
P1A=F	P2A (X2)		12.0	12	001	7077
/ .	50A	1	12.5	16	759	12144
	60B	2	5	100	92	9200
	60B	3	5	200	32	6400
P3=P4				200		0.00
1 0-1 4	50A	1	16	12	177	2124
	60B	2	5	12	72	864
	60B	3	5	12	23	276
	50A	4	16	12	387	4644
	60B	5	5	52	72	3744
	60B	6	5	52	22	1144
P5=P6				02		
	50A	1	12.5	12	167	2004
	60B	2	5	64	72	4608
	60B	3	5	64	23	1472
	50A	4	12.5	12	387	4644
S1=S2			12.0			
0. 02	50A	1	12.5	14	94	1316
	50A	2	12.5	12	108	1296
ARMA	ÇÃO DO PI					.200
,, .	60B	1	5	2	-CORR-	68000
	50A	2	6.3	112	110	12320
	50A	3	10	9	625	5625
	50A	4	10	9	632	5688
DFT T	IPO DAS CI					0000
	50A	1	6.3	57	120	6840
	50A	2	12.5	4	-CORR-	4440
ARMA	ÇÃO PAR 7		•			•
	50A	1	8	70	630	44100
	50A	2	8	74	990	73260
	50A	3	8	22	720	15840
	50A	4	12.5	51	520	26520
	50A	5	12.5	51	540	27540
	50A	6	12.5	10	542	5420
	50A	7	12.5	10	562	5620
	50A	8	12.5	11	617	6787
	50A	9	12.5	11	657	7227
	50A	10	12.5	12	442	5304
	50A	11	12.5	12	462	5544
	50A	12	12.5	68	517	35156
		13	12.5			

RESUMO AÇO CA 50-60						
AÇO	AÇO BIT COMPR PESO					
	(mm)	(m)	(kg)			
60B	5	1018	163			
50A	6.3	192	48			
50A	8	1332	533			
50A	10	113	71			
50A	12.5	1955	1955			
50A	16	68	108			
Peso Total	Peso Total 60B = 163 kg					
Peso Total	o Total 50A = 2715 kg					

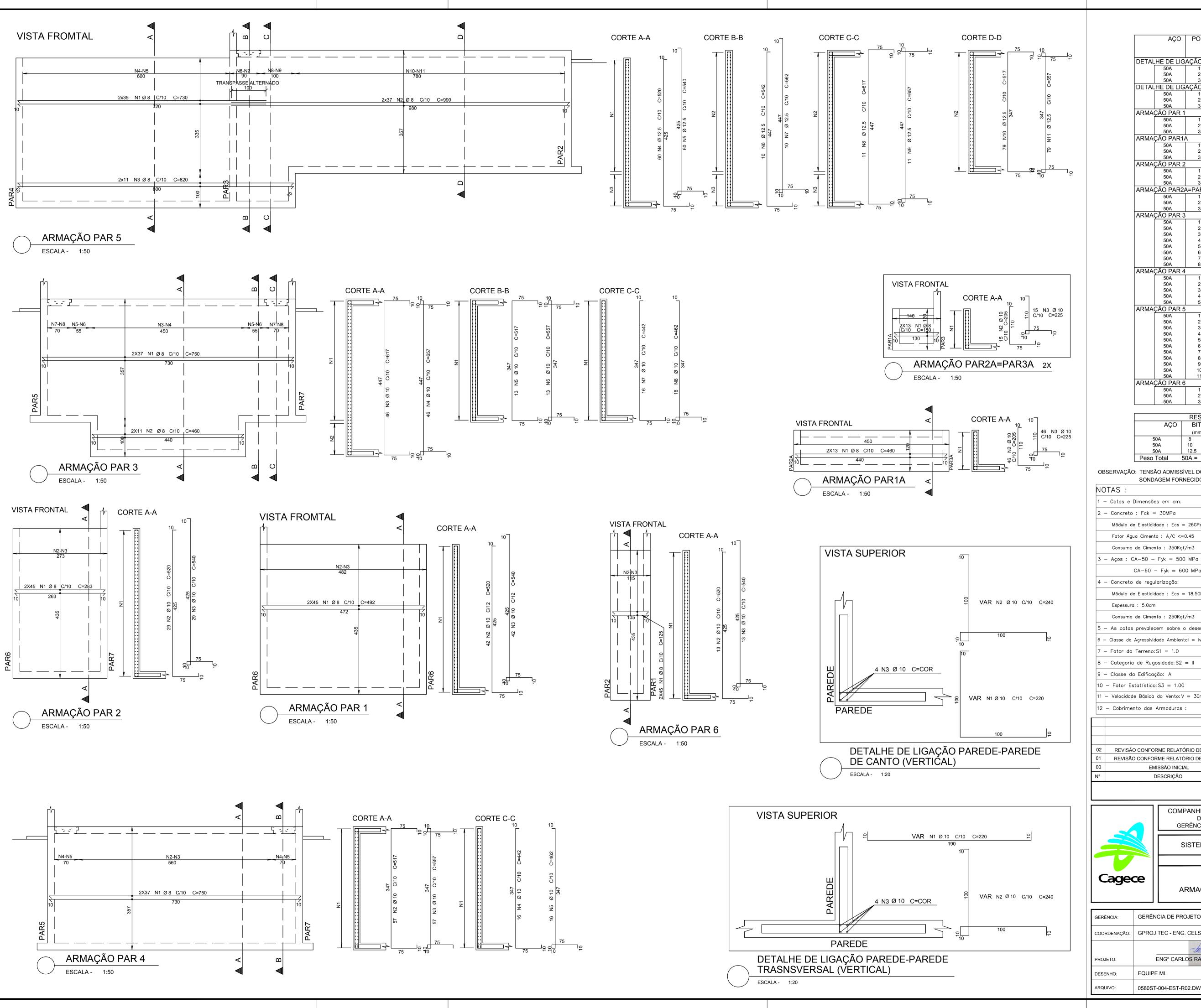
OBSERVAÇÃO: TENSÃO ADMISSÍVEL DO SOLO ADOTADA DE 2,5KGF/CM2, COM BASE NO RELATÓRIO DE SONDAGEM FORNECIDO

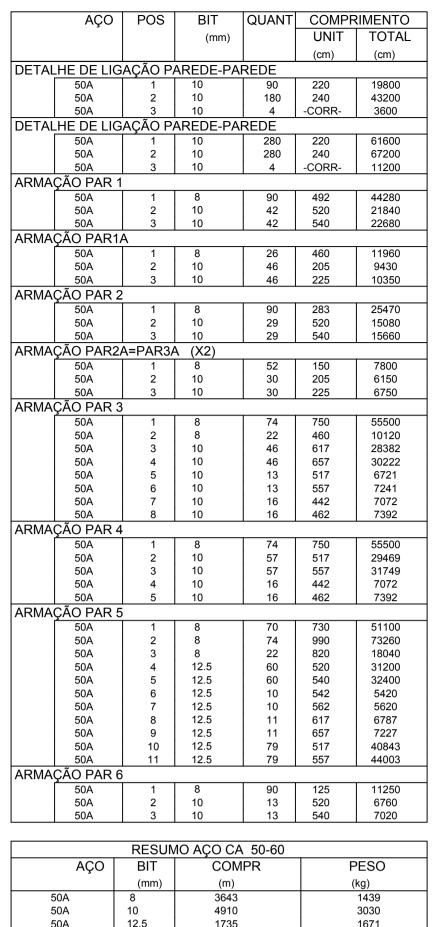
NOTAS :	
1 — Cotas e Dimensões em cm.	Lajes: 5.0cm Sapatas: 5.0cm
2 — Concreto : Fck = 30MPa	Pilares: 5.0cm Vigas: 5.0cm
Módulo de Elasticidade : Ecs = 26GPa	Blocos: 5.0cm Tubulão: 5.0cm
Fator Água Cimento : A/C <=0.45	Radier: 5.0cm
Consumo de Cimento : 350Kgf/m3	13 — Norma de fôrmas e escoramentos :NBR 15696/2009
3 - Aços : CA-50 - Fyk = 500 MPa	Fôrmas e escoramentos para estruturas de concreto
CA-60 - Fyk = 600 MPa	Projeto,dimensionamneto e procedimentos executivos
4 — Concreto de regularização:	14 — Norma de Cargas : NBR 6120/1980
Módulo de Elasticidade : Ecs = 18.5GPa	Cargas para Cálculo de Estruturas em Edificações
Espessura : 5.0cm	15 — Norma de Cálculo : NBR 6118/2014
Consumo de Cimento : 250Kgf/m3	Projeto de Estruturas de Concreto-Procedimento
5 — As cotas prevalecem sobre o desenho	16 — Norma de Fundações : NBR 6122/2010
6 — Classe de Agressividade Ambiental = Iv	Projeto e execução de fundações
7 — Fator do Terreno:S1 = 1.0	17 — Norma de incêndio em concreto : NBR 15200/2012
8 — Categoria de Rugosidade:S2 = II	Projeto de estruturas de concreto em situação de incêndio
9 — Classe da Edificação: A	18 — Norma de execução de concreto : NBR 14931/2004
10 - Fator Estatístico:S3 = 1.00	Execução de estruturas de concreto — Procedimento
11 — Velocidade Básica do Vento:V = 30m/s	19 — As normas citadas acima devem ser seguidas
12 — Cobrimento das Armaduras :	tanto na elaboração dos projetos quanto na execução das obras

02	REVISÃO CONFORME RELATÓRIO DE ANÁLISE	03/09/2020	CARLOS RAPHAEL	EQUIPE ML
01	REVISÃO CONFORME RELATÓRIO DE ANÁLISE	22/05/2020	CARLOS RAPHAEL	EQUIPE ML
00	EMISSÃO INICIAL	01/08/2018	CARLOS RAPHAEL	EQUIPE ML
N°	DESCRIÇÃO	DATA	PROJETADO	DESENHADO

REVISÃO

COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ DIRETORIA DE ENGENHARIA GERÊNCIA DE PROJETOS DE ENGENHARIA


PROJETO BÁSICO PROJETO ESTRUTURAL ESTAÇÃO ELEVATÓRIA / RAP 150m3 ARMAÇÕES: PISO DO TÉRREO, CINTAS, PILARES, SAPATAS E


PAREDE 7

SISTEMA DE ABASTECIMENTO DE ÁGUA ITAPIPOCA

DESENHO PRANCHA Nº

GERÊNCIA:	GERÊNCIA DE PROJETOS DE ENGENHARIA		
COORDENAÇÃO:	GPROJ TEC - ENG. CELSO LIRA XIMENES JÚNIOR - CREA 0611862050		
PROJETO:	ENGO CARLOS RAPHAEL MONTEIRO DE LEMOS - CREA/ES: 012	1840/D	
DESENHO:	EQUIPE ML	ESCALA:	INDICADA
ARQUIVO:	0580ST-005-EST-R02.DWG	DATA:	SETEMBRO/2020

OBSERVAÇÃO: TENSÃO ADMISSÍVEL DO SOLO ADOTADA DE 2,5KGF/CM2, COM BASE NO RELATÓRIO DE

SONDAGEM FORNECIDO	
NOTAS :	
1 — Cotas e Dimensões em cm.	Lajes: 5.0cm Sapatas: 5.0cm
2 - Concreto : Fck = 30MPa	Pilares: 5.0cm Vigas: 5.0cm
Módulo de Elasticidade : Ecs = 26GPa	Blocos: 5.0cm Tubulão: 5.0cm
Fator Água Cimento : A/C <=0.45	Radier: 5.0cm
Consumo de Cimento : 350Kgf/m3	13 — Norma de fôrmas e escoramentos :NBR 15696/2009
3 - Aços : CA-50 - Fyk = 500 MPa	Fôrmas e escoramentos para estruturas de concreto
CA-60 - Fyk = 600 MPa	Projeto,dimensionamneto e procedimentos executivos
4 — Concreto de regularização:	14 — Norma de Cargas : NBR 6120/1980
Módulo de Elasticidade : Ecs = 18.5GPa	Cargas para Cálculo de Estruturas em Edificações
Espessura : 5.0cm	15 — Norma de Cálculo : NBR 6118/2014
Consumo de Cimento : 250Kgf/m3	Projeto de Estruturas de Concreto—Procedimento
5 — As cotas prevalecem sobre o desenho	16 — Norma de Fundações : NBR 6122/2010
6 — Classe de Agressividade Ambiental = Iv	Projeto e execução de fundações
7 - Fator do Terreno: S1 = 1.0	17 — Norma de incêndio em concreto : NBR 15200/2012
8 — Categoria de Rugosidade: S2 = II	Projeto de estruturas de concreto em situação de incêndio
9 — Classe da Edificação: A	18 — Norma de execução de concreto : NBR 14931/2004
10 - Fator Estatístico: S3 = 1.00	Execução de estruturas de concreto — Procedimento
11 — Velocidade Básica do Vento:V = 30m/s	19 — As normas citadas acima devem ser seguidas
12 — Cobrimento das Armaduras :	tanto na elaboração dos projetos quanto na execução das obras

REVISÃO CONFORME RELATÓRIO DE ANÁLISE	03/09/2020	CARLOS RAPHAEL	EQUIPE ML
REVISÃO CONFORME RELATÓRIO DE ANÁLISE	22/05/2020	CARLOS RAPHAEL	EQUIPE ML
EMISSÃO INICIAL	01/08/2018	CARLOS RAPHAEL	EQUIPE ML
DESCRIÇÃO	DATA	PROJETADO	DESENHADO

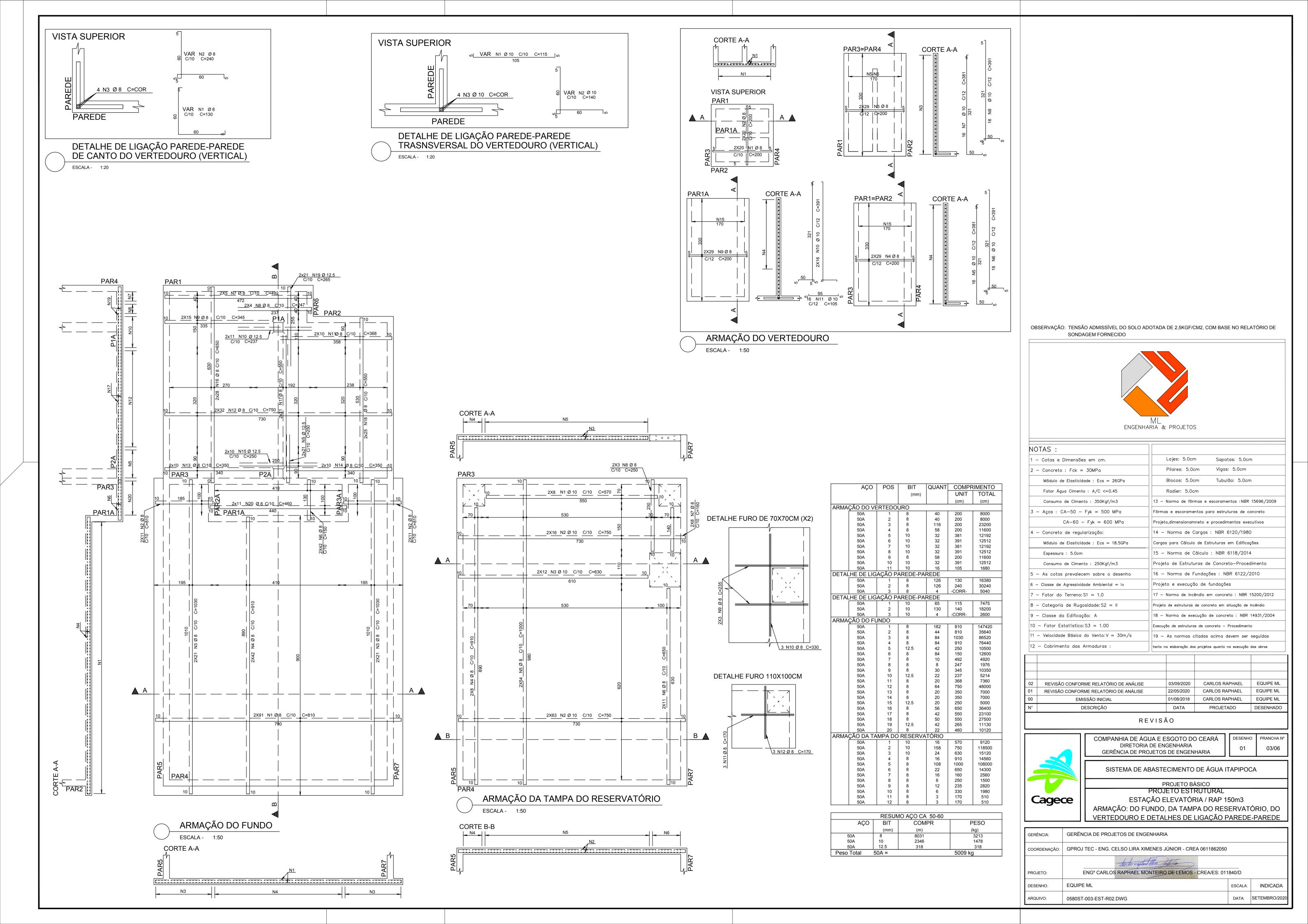
COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ DIRETORIA DE ENGENHARIA GERÊNCIA DE PROJETOS DE ENGENHARIA

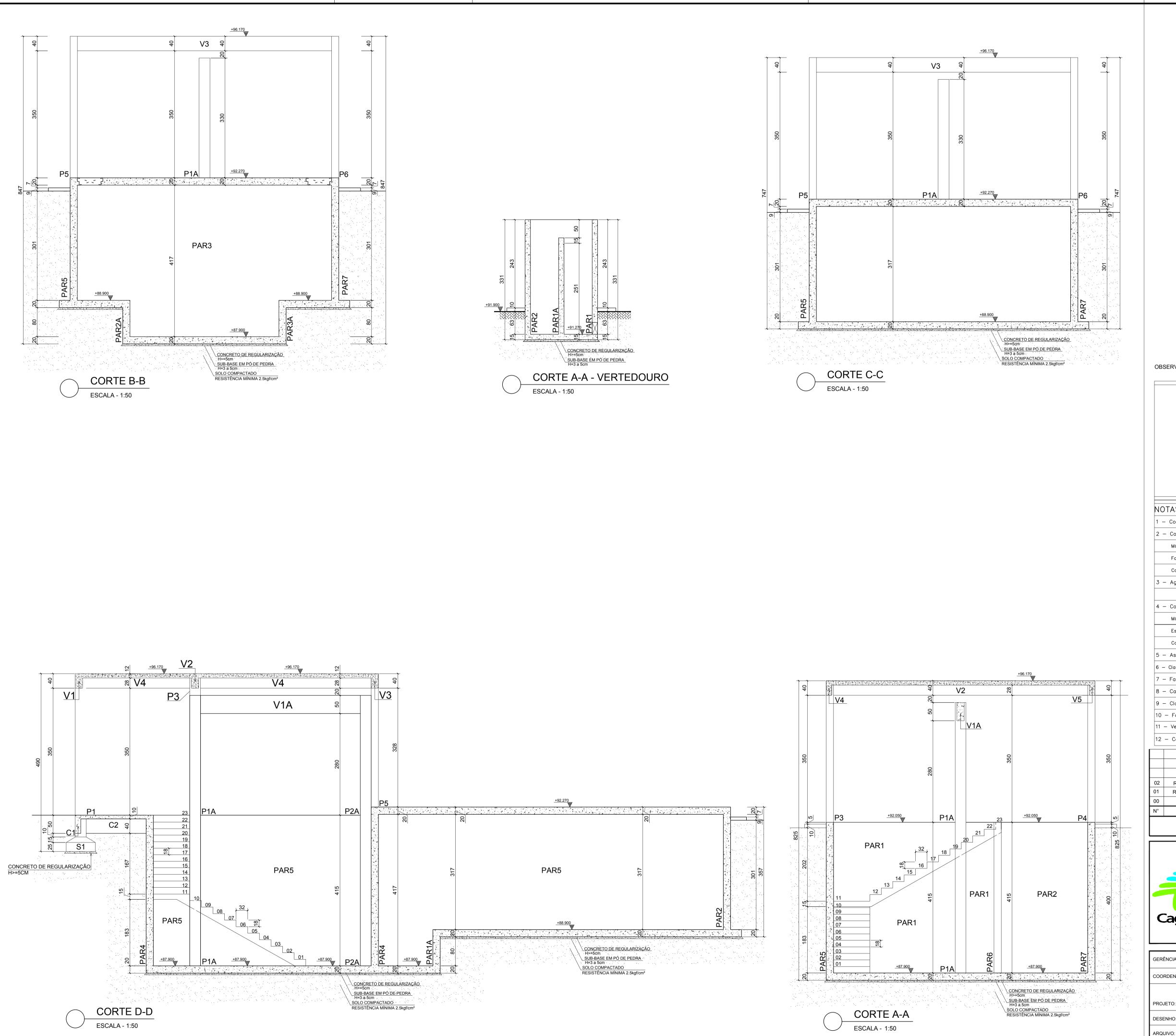
REVISÃO

SISTEMA DE ABASTECIMENTO DE ÁGUA ITAPIPOCA

PROJETO BÁSICO

PROJETO ESTRUTURAL


ESTAÇÃO ELEVATÓRIA / RAP 150m3


ARMAÇÃO DAS PAREDES E DETALHES DE LIGAÇÃO

PAREDE-PAREDE

DESENHO PRANCHA Nº

GERÊNCIA:	GERÊNCIA DE PROJETOS DE ENGENHARIA				
COORDENAÇÃO:	GPROJ TEC - ENG. CELSO LIRA XIMENES JÚNIOR - CREA 0611862050				
PROJETO:	ENGO CARLOS RAPHAEL MONTEIRO DE LEMOS - CREA/ES: 012	1840/D			
DESENHO:	EQUIPE ML	ESCALA:	INDICADA		
ARQUIVO:	0580ST-004-EST-R02.DWG	DATA:	SETEMBRO/2020		

OBSERVAÇÃO: TENSÃO ADMISSÍVEL DO SOLO ADOTADA DE 2,5KGF/CM2, COM BASE NO RELATÓRIO DE SONDAGEM FORNECIDO

NOTAS :	
1 — Cotas e Dimensões em cm.	Lajes: 5.0cm Sapatas: 5.0cm
2 - Concreto : Fck = 30MPa	Pilares: 5.0cm Vigas: 5.0cm
Módulo de Elasticidade : Ecs = 26GPa	Blocos: 5.0cm Tubulão: 5.0cm
Fator Água Cimento : A/C <=0.45	Radier: 5.0cm
Consumo de Cimento : 350Kgf/m3	13 — Norma de fôrmas e escoramentos :NBR 15696/2009
3 - Aços : CA-50 - Fyk = 500 MPa	Fôrmas e escoramentos para estruturas de concreto
CA-60 - Fyk = 600 MPa	Projeto,dimensionamneto e procedimentos executivos
4 — Concreto de regularização:	14 — Norma de Cargas : NBR 6120/1980
Módulo de Elasticidade : Ecs = 18.5GPa	Cargas para Cálculo de Estruturas em Edificações
Espessura : 5.0cm	15 — Norma de Cálculo : NBR 6118/2014
Consumo de Cimento : 250Kgf/m3	Projeto de Estruturas de Concreto—Procedimento
5 — As cotas prevalecem sobre o desenho	16 — Norma de Fundações : NBR 6122/2010
6 — Classe de Agressividade Ambiental = Iv	Projeto e execução de fundações
7 - Fator do Terreno: S1 = 1.0	17 — Norma de incêndio em concreto : NBR 15200/2012
8 — Categoria de Rugosidade: S2 = II	Projeto de estruturas de concreto em situação de incêndio
9 — Classe da Edificação: A	18 — Norma de execução de concreto : NBR 14931/2004
10 — Fator Estatístico:S3 = 1.00	Execução de estruturas de concreto — Procedimento
11 - Velocidade Básica do Vento:V = 30m/s	19 — As normas citadas acima devem ser seguidas
12 — Cobrimento das Armaduras :	tanto na elaboração dos projetos quanto na execução das obras

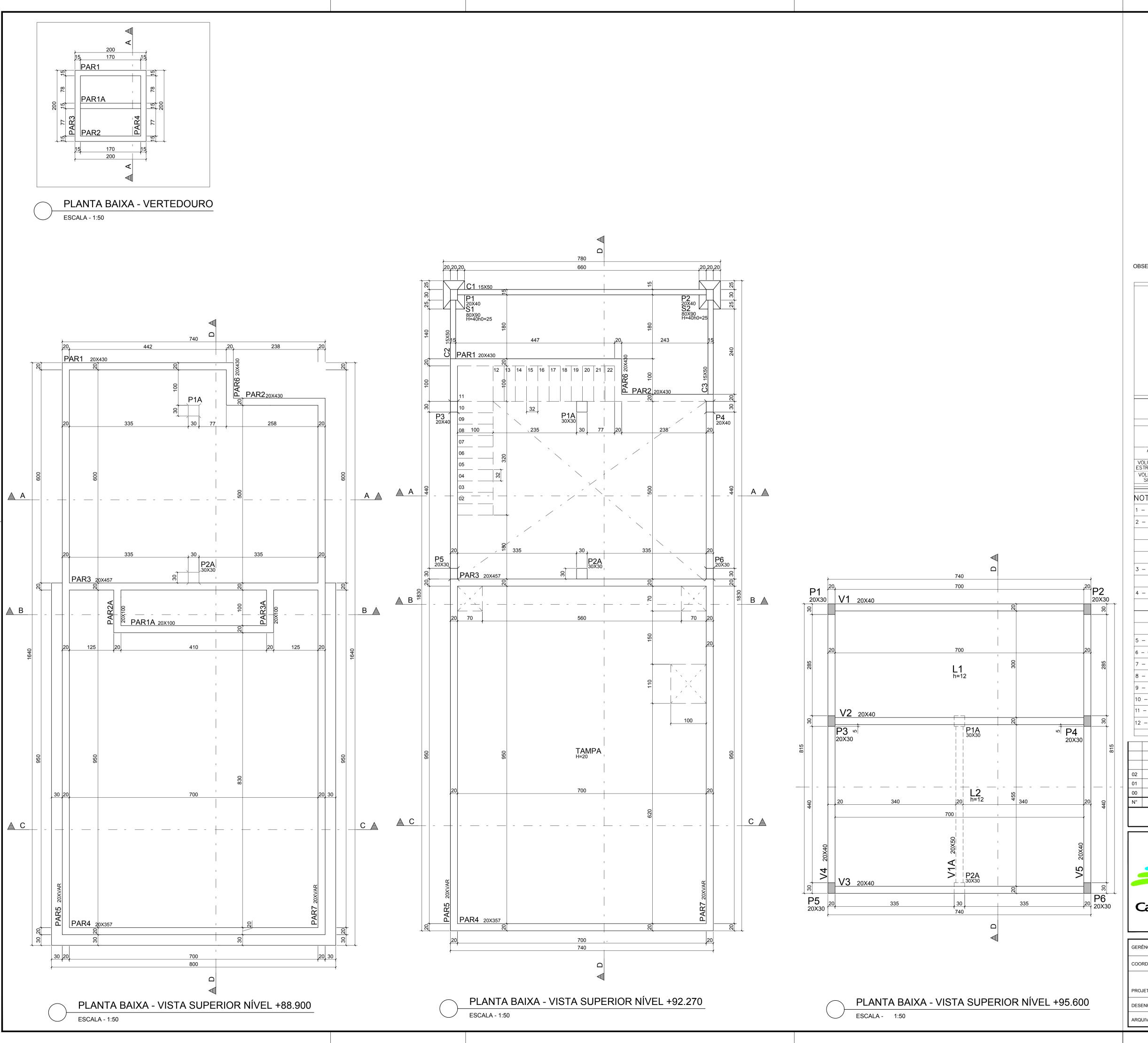
)2	REVISÃO CONFORME RELATÓRIO DE ANÁLISE	03/09/2020	CARLOS RAPHAEL	EQUIPE ML
1	REVISÃO CONFORME RELATÓRIO DE ANÁLISE	22/05/2020	CARLOS RAPHAEL	EQUIPE ML
0	EMISSÃO INICIAL	01/08/2018	CARLOS RAPHAEL	EQUIPE ML
l°	DESCRIÇÃO	DATA	PROJETADO	DESENHADO

REVISÃO

COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ DIRETORIA DE ENGENHARIA GERÊNCIA DE PROJETOS DE ENGENHARIA

SISTEMA DE ABASTECIMENTO DE ÁGUA ITAPIPOCA

PROJETO BÁSICO


PROJETO ESTRUTURAL

ESTAÇÃO ELEVATÓRIA / RAP 150m3

CORTES: A-A, B-B, C-C, D-D E CORTE A-A DO VERTEDOURO

DESENHO PRANCHA Nº

GERÊNCIA:	GERÊNCIA DE PROJETOS DE ENGENHARIA				
COORDENAÇÃO:	GPROJ TEC - ENG. CELSO LIRA XIMENES JÚNIOR - CREA 0611862050				
PROJETO:	ENGO CARLOS RAPHAEL MONTEIRO DE LEMOS - CREA/ES: 011	840/D			
DESENHO:	EQUIPE ML	ESCALA:	INDICADA		
ARQUIVO:	0580ST-002-EST-R02.DWG	DATA:	SETEMBRO/2020		

OBSERVAÇÃO: TENSÃO ADMISSÍVEL DO SOLO ADOTADA DE 2,5KGF/CM2, COM BASE NO RELATÓRIO DE SONDAGEM FORNECIDO

QUANTITATIVOS

		ELEMENTOS ESTRUTURAIS						
	ТАМРА	PAREDES	FUNDO	VIGAS	PILAR	LAJES	VERTEDOURO	TOTAL
ÁREA DE FORMAS (m2)	7.00	450.00	16.00	49.00	46.00	63.00	68.00	699.00
VOLUME DE CONCRETO ESTRUTURAL 30MPA(m3) 1.00	46.00	27.50	4.50	3.50	9.00	6.00	97.50
VOLUME DE CONCRETO SIMPLES 15MPA(m3)	xxx	xxx	6.50	xxx	XXX	xxx	0.20	6.70

NOTAS :	
1 — Cotas e Dimensões em cm.	Lajes: 5.0cm Sapatas: 5.0cm
2 - Concreto : Fck = 30MPa	Pilares: 5.0cm Vigas: 5.0cm
Módulo de Elasticidade : Ecs = 26GPa	Blocos: 5.0cm Tubulão: 5.0cm
Fator Água Cimento : A/C <=0.45	Radier: 5.0cm
Consumo de Cimento : 350Kgf/m3	13 — Norma de fôrmas e escoramentos :NBR 15696/2009
3 - Aços : CA-50 - Fyk = 500 MPa	Fôrmas e escoramentos para estruturas de concreto
CA-60 - Fyk = 600 MPa	Projeto,dimensionamneto e procedimentos executivos
4 — Concreto de regularização:	14 — Norma de Cargas : NBR 6120/1980
Módulo de Elasticidade : Ecs = 18.5GPa	Cargas para Cálculo de Estruturas em Edificações
Espessura : 5.0cm	15 — Norma de Cálculo : NBR 6118/2014
Consumo de Cimento : 250Kgf/m3	Projeto de Estruturas de Concreto—Procedimento
5 — As cotas prevalecem sobre o desenho	16 - Norma de Fundações : NBR 6122/2010
6 — Classe de Agressividade Ambiental = Iv	Projeto e execução de fundações
7 - Fator do Terreno: S1 = 1.0	17 — Norma de incêndio em concreto : NBR 15200/2012
8 — Categoria de Rugosidade: S2 = II	Projeto de estruturas de concreto em situação de incêndio
9 — Classe da Edificação: A	18 — Norma de execução de concreto : NBR 14931/2004
10 - Fator Estatístico: S3 = 1.00	Execução de estruturas de concreto — Procedimento
11 - Velocidade Básica do Vento: V = 30m/s	19 — As normas citadas acima devem ser seguidas
12 — Cobrimento das Armaduras :	tanto na elaboração dos projetos quanto na execução das obras

02	REVISÃO CONFORME RELATÓRIO DE ANÁLISE	03/09/2020	CARLOS RAPHAEL	EQUIPE ML
01	REVISÃO CONFORME RELATÓRIO DE ANÁLISE	22/05/2020	CARLOS RAPHAEL	EQUIPE ML
00	EMISSÃO INICIAL	01/08/2018	CARLOS RAPHAEL	EQUIPE ML
N°	DESCRIÇÃO	DATA	PROJETADO	DESENHADO

REVISÃO

COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ DIRETORIA DE ENGENHARIA GERÊNCIA DE PROJETOS DE ENGENHARIA

SISTEMA DE ABASTECIMENTO DE ÁGUA ITAPIPOCA

PROJETO BÁSICO
PROJETO ESTRUTURAL
ESTAÇÃO ELEVATÓRIA / RAP 150m3
PLANTA BAIXA NÍVEIS: +88.900, +92.270,+95.600 E
VERTEDOURO

DESENHO PRANCHA Nº

GERÊNCIA:	GERÊNCIA DE PROJETOS DE ENGENHARIA				
COORDENAÇÃO:	GPROJ TEC - ENG. CELSO LIRA XIMENES JÚNIOR - CREA 0611862050				
PROJETO:	ENG° CARLOS RAPHAEL MONTEIRO DE LEMOS - CREA/ES: 011	840/D			
DESENHO:	EQUIPE ML	ESCALA:	INDICADA		
ARQUIVO:	0580ST-001-EST-R02.DWG	DATA:	SETEMBRO/2020		

Leito Drenante

MEMORIA DE CÁLCULO – LEITO DRENANTE

Serra/ES

22 de MAIO de 2020

ÍNDICE

<u>ITEM</u>	<u>DESCRIÇÃO</u>	<u>PÁGINA</u>
1.1	OBJETIVO	3
1.2	DOCUMENTOS DE REFERÊNCIA	3
1.3	INTRODUÇÃO	3
1.4	CARACTERÍSTICAS GERAIS DO PROJETO	3
2.0	MODELO DE CÁLCULO	<u>6</u>
2.1	CARGAS E COMBINAÇÕES	<u>7</u>
2.2	DIMENSIONAMENTO DAS SEÇÕES	<u>8</u>
2.3	SEÇÕES DE CONCRETO UTILIZADAS	<u>9</u>
2.4	FUNDAÇÕES	<u>10</u>
3.0	LEITO DRENANTES	<u>11</u>
3.1	FUNDO	<u>11</u>
3.2	PAREDES	<u>13</u>

1.1 OBJETIVO

Este presente trabalho visa desenvolver o projeto estrutural do leito drenante.

1.2 DOCUMENTOS DE REFERÊNCIA

Os documentos relacionados foram utilizados na elaboração deste documento ou contêm instruções e procedimentos aplicáveis a ele. Devem ser utilizados na sua revisão mais recente:

SAA Itapipoca - 16 e 17 Leitos Drenante

1.3 INTRODUÇÃO

O presente trabalho complementa as pranchas de armação e formas relativas à: leito drenante.

O dimensionamento dos elementos citados fora executado tomando como base as normas que seguem:

- NBR 6118 Projeto de estruturas de concreto Procedimentos
- NBR 6120 Cargas para o cálculo de estruturas de edificações
- NBR 6122 Projeto e execução de fundações
- NBR 6123 Força devidas ao vento em edificações
- NBR 8681:2003 Ações e segurança nas estruturas Procedimentos.

Documentos técnicos e livros como:

- Resistência do Materias, V. Feodosiev
- Curso de Concreto Armado, José Milton de Araújo

Além dos softwares de dimensionamento e análise hiperestática: STRAP 2011

1.4 CARACTERÍSTICAS GERAIS DO PROJETO

- Fck: 30 MPa
- Fator água-cimento: 0.45 (máximo)
- Aço CA 50 e CA 60
- Es: 210 GPa
- Deformação limite do aço para dimensionamento: 10%.
- Grau de agressividade do Meio Ambiente: III (NBR 6118/2014)
- Limite de abertura de Fissuras ≤ 0.3 mm
- Dimensão máxima do agregado graúdo: 25 mm
- Método para análise de 2° Ordem Global: Gama Z
- Compactação com Proctor normal à 100%

Classe de Agressividade Ambiental NBR6118:2014

Classe de agressividade ambiental	Agressividade	Classificação geral do tipo de ambiente para efeito de projeto	Risco de deterioração da estrutura	
2347	France	Rural	Insignificante	
41.	Fraca	Submersa	magnincarite	
II	Moderada	Urbana a, b	Pequeno	
628	Forte Marinha a		Consider	
111	Fone	Industrial a, b	Grande	
IV	Muito forte	Industrial ^{a, c}	Flounds	
	Withto forte	Respingos de maré	Elevado	

- Pode-se admitir um microclima com uma classe de agressividade mais branda (uma classe acima) para ambientes internos secos (salas, dormitórios, banheiros, cozinhas e áreas de serviço de apartamentos residenciais e conjuntos comerciais ou ambientes com concreto revestido com argamassa e pintura).
- Pode-se admitir uma classe de agressividade mais branda (uma classe acima) em obras em regiões de clima seco, com umidade média relativa do ar menor ou igual a 65 %, partes da estrutura protegidas de chuva em ambientes predominantemente secos ou regiões onde raramente chove.
- ^c Ambientes quimicamente agressivos, tanques industriais, galvanoplastia, branqueamento em indústrias de celulose e papel, armazéns de fertilizantes, indústrias químicas.
- Cobrimento de acordo com a Classe de Agressividade Ambiental NBR6118:2014

		Classe de a	agressividade	ambiental (T	abela 6.1
Tipo de estrutura	Componente ou	Ĭ.	П	Ш	IVc
	elemento	Cobrimento nominal mm			
	Laje ^b	20	25	35	45
	Viga/pilar	25	30	40	50
Concreto armado	Elementos estruturais em contato com o solo ^d	.3	30	40	50
Concreto protendido ^a	Laje	25	30	40	50
	Viga/pilar	30	35	45	55

- a. Cobrimento nominal da bainha ou dos fios, cabos e cordoalhas. O cobrimento da armadura passiva deve respeitar os cobrimentos para concreto armado.
- b Para a face superior de lajes e vigas que serão revestidas com argamassa de contrapiso, com revestimentos finais secos tipo carpete e madeira, com argamassa de revestimento e acabamento, como pisos de elevado desempenho, pisos cerâmicos, pisos asfálticos e outros, as exigências desta Tabela podem ser substituídas pelas de 7.4.7.5, respeitado um cobrimento nominal ≥ 15 mm.
- Nas superfícies expostas a ambientes agressivos, como reservatórios, estações de tratamento de água e esgoto, condutos de esgoto, canaletas de efluentes e outras obras em ambientes química e intensamente agressivos, devem ser atendidos os cobrimentos da classe de agressividade IV.
- d No trecho dos pilares em contato com o solo junto aos elementos de fundação, a armadura deve ter cobrimento nominal ≥ 45 mm.

Limite de Abertura de Fissuras de acordo com a Classe de Agressividade Ambiental NBR6118:2014

Tabela 13.4 – Exigências de durabilidade relacionadas à fissuração e à proteção da armadura, em função das classes de agressividade ambiental

	No. 50 Parasi San Per-analysis	A10-75	M 2000 3490 1150 35		
Tipo de concreto estrutural	estrutural ambiental (CAA) e tipo relativas de protensão à fissuração		etrutural ambientai (CAA) e tipo relativas		Combinação de ações em serviço a utilizar
Concreto simples					
	CAAI	ELS-W <i>w</i> _k ≤ 0,4 mm	Combinação frequente		
Concreto armado	CAA II e CAA III	ELS-W <i>w</i> _k ≤ 0,3 mm			
	CAA IV	ELS-W $w_k \le 0.2 \text{ mm}$			
Concreto protendido nível 1 (protensão parcial)	Pré-tração com CAA I ou Pós-tração com CAA I e II	ELS-W <i>w</i> _k ≤ 0,2 mm	Combinação frequente		
Concreto	Pré-tração com CAA II	Verificar as duas	s condições abaixo		
protendido nível 2	ou	ELS-F	Combinação frequente		
(protensão limitada)	Pós-tração com CAA III e IV	ELS-D a	Combinação quase permanente		
Concreto		Verificar as duas	s condições abaixo		
protendido nível 3 (protensão	Pré-tração com CAA III e IV	ELS-F	Combinação rara		
completa)		ELS-Da	Combinação frequente		

a A critério do projetista, o ELS-D pode ser substituído pelo ELS-DP com a_p = 50 mm (Figura 3.1). NOTAS

Fator Água-Cimento de acordo com a Classe de Agressividade Ambiental NBR6118:2014

Tabela 7.1 – Correspondência entre a classe de agressividade e a qualidade do concreto

Concreto a	Tipo b, c	Cla	Classe de agressividade (Tabela 6.1)			
	1100 5,5	1	H	Ш	IV	
Relação água/cimento em massa	CA	≤ 0,65	≤0,60	≤ 0,55	≤ 0,45	
	CP	≤ 0,60	≤ 0,55	≤ 0,50	≤ 0,45	
Classe de concreto (ABNT NBR 8953)	CA	≥ C20	≥ C25	≥ C30	≥ C40	
	CP	≥ C25	≥ C30	≥ C35	≥ C40	

a O concreto empregado na execução das estruturas deve cumprir com os requisitos estabelecidos na ABNT NBR 12655.

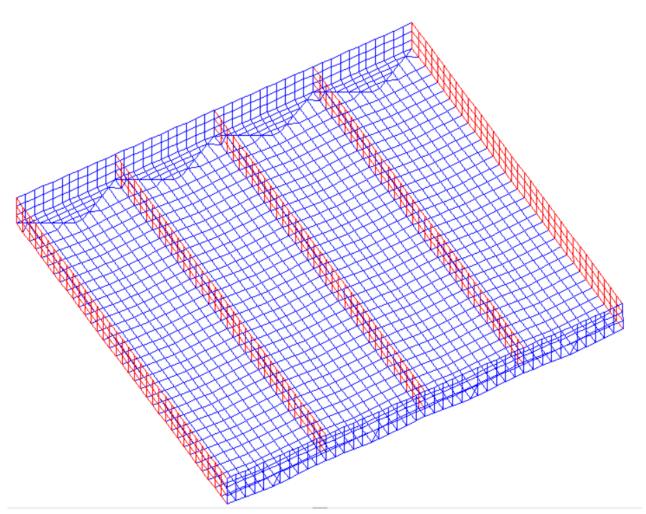
¹ As definições de ELS-W, ELS-F e ELS-D encontram-se em 3.2.

² Para as classes de agressividade ambiental CAA-III e IV, exige-se que as cordoalhas não aderentes tenham proteção especial na região de suas ancoragens.

³ No projeto de lajes lisas e cogumelo protendidas, basta ser atendido o ELS-F para a combinação frequente das ações, em todas as classes de agressividade ambiental.

b CA corresponde a componentes e elementos estruturais de concreto armado.

CP corresponde a componentes e elementos estruturais de concreto protendido.


Dimensão máxima do agregado graúdo - NBR6118:2014

7.4.7.6 A dimensão máxima característica do agregado graúdo utilizado no concreto não pode superar em 20 % a espessura nominal do cobrimento, ou seja:

 $d_{\text{máx}} \le 1.2 c_{\text{nom}}$

2.0 MODELO DE CÁLCULO

O campo de deslocamentos e tensões foi calculada adotando-se a metodologia implementada pelo software comercial STRAP VERSÃO 2011.

PERSPECTIVA 3D - Leito de Secagem

2.1 CARGAS E COMBINAÇÕES

Ações Permanentes:

- g1 Peso próprio do concreto (permanente direta)
- g2 Empuxo de terra (permanente direta)
- q1 Água

Ações Variáveis Acidentais:

• q2 - Sobrecarga

Coeficientes de ponderação (γg , γq), fatores de combinação (ψq), e fatores de redução ($\psi 1$, $\psi 1$) para:

- Combinação Normal (CN) em Estado Limite de Utilização (ELU);
- Combinação Quase Permanente (CQP) em Estado Limite de Serviço (ELS);
- > Combinação Frequente (CF) em Estado Limite de Serviço (ELS).

	CN-ELU	CQP-ELS	CF-ELS
Ações Permanentes:	γg	γg	γg
Cargas permanentes	1,4	1	1
Retração	1,2	1	1
Ações Variáveis (qdo. princ.):	γq	γq	γq
Sobrecarga	1,4	1	1
Empuxo hidrostático	1,4	1	1
Gradiente térmico	1,2	1	1
Ações Variáveis (qdo. secnd.):	ψ0	ψ1	ψ2
Sobrecarga	0,8	0,7	0,6
Empuxo hidrostático	0,8	0,7	0,6
Gradiente térmico	0,6	0,5	0,3

Grandezas Físicas das Ações:

- g1 Peso próprio do concreto = Volume dos elementos multiplicado pelo peso específico do concreto armado. Unidades: peso em tf e o volume em m³.
- g2 -Empuxo de terra

Argila com areia fina cor variegada

$$\gamma t = 18,00 \text{ kN/m}^3 \text{ Godoy, } 1972$$

$$\phi = 0^{\circ}$$
 K0 = 1,00 K0 = 1 - sen ϕ

 $p = K0.\gamma t.h$

 g3 - Enchimentos = Volume do elemento multiplicado pelo peso específico do material. Unidades: peso em tf e volume em m³.

- g4 Retração: Não Consideramos uma retração em toda a estrutura
- q1 Empuxo Hidrostático interno: Em todas as faces internas estão sendo aplicada uma pressão de base ao topo. O peso específico utilizado no cálculo destas pressões é o da água, igual a 1tf/m³ multiplicado pela altura da lamina d'água.
- q2 Sobrecarga: Nas lajes de tampa e escadas foram consideradas sobrecargas de utilização iguais a 0,3 tf/m².
- q3 gradiente térmico: Não foi considerado, as estruturas estão enterradas e as partes expostas tem pequenas dimensões e em consequência as deformações devido ao gradiente térmico são insignificantes.

Combinações:

Estado Limite Último - ELU-CN (cheio):

C01 = 1,40.(g1+g3)+g2+1,40.q1+1,20.q2

C02 = 1,40.(g1+g3)+g2+1,40.q2+1,20.q1

Estado Limite Último - ELU-CN (vazio):

C03 = 1,40.(g1+g2+g3)+1,40.q2

Estado Limite de Serviço ELS-CF (cheio)

C05 = 1,00.(g1+g2+g3)+0,70.q1+0,60.q2

C06 = 1,00.(g1+g2+g3)+0,70.q2+0,60.q1

Estado Limite de Serviço ELS-CF (vazio)

C07 = 1,00.(g1+g2+g3)+0,70.q2

Especial, para verificação da flutuação

C08 = 1,00.(g1+g3)+1,00.q4

2.2 DIMENSIONAMENTO DAS SEÇÕES

Os cálculos de paredes e lajes de fundo e tampas foram considerados um elemento estrutural de 100 cm de largura e altura h, para o dimensionamento a flexo-tração com a força da envoltória máxima nas direções x e y e momentos da envoltória máxima e mínima nas direções x e y. A compressão aqui foi desprezada por entender que a solicitação máxima acontece quando o elemento estrutural em questão é tracionado junto com a flexão.

Após a verificação da flexo-tração o elemento foi verificado com relação à formação de fissuras.

Momento mínimo para a dispensa de análise de fissuração (ESTÁDIO I e II):

$$M_R = a f_{ct} I_o / y_t [tf. m]$$
(1)

Calculando teremos, M_r para um fck = 30 MPa e h variado igual à:

- h=15cm; $M_r = 1,906tf.m$
- h=20cm; $M_r = 3,388tf.m$
- h=25cm; $M_r = 5,295tf.m$
- h=30cm; M_r = 7,625tf.m
- h=35cm; M_r = 10,378tf.m
- h=40cm; M_r = 13,555tf.m

Armadura mínima prevista em norma:

$$A_{s,min} = \rho_{min} 100h \left[\frac{cm^2}{m}\right] \tag{2}$$

Sendo ho_{min} taxa de armadura mínima conforme a NBR 6118:2014

Forma da seção						Valo	ores de	Pmin ^a %	(A _{s,mín}	/A _C)					
	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
Retangular	0,150	0,150	0,150	0,164	0,179	0,194	0,208	0,211	0,219	0,226	0,233	0,239	0,245	0,251	0,256

a Os valores de ρ_{min} estabelecidos nesta Tabela pressupõem o uso de aço CA-50, d/h = 0,8 e γ_{C} = 1,4 e γ_{S} = 1,15. Caso esses fatores sejam diferentes, ρ_{min} deve ser recalculado.

Calculando teremos, A_{s,min} para um fck = 30MPa, b=100cm, seção retangular e h variado igual à:

- h=15cm; $A_{s,min} = 2,25 \text{cm}^2/\text{m}$ Ø8 C/20
- h=20cm; $A_{s,min} = 3,00 \text{cm}^2/\text{m}$ Ø8 C/15
- h=25cm; $A_{s,min} = 3.75 \text{cm}^2/\text{m}$ Ø8 C/12 ou Ø10 C/20
- h=30cm; A_{s,min} = 4,50cm²/m Ø8 C/10 ou Ø10 C/15
- h=35cm; $A_{s,min} = 5,25cm^2/m$ Ø10 C/12
- h=40cm; $A_{s,min} = 6,00 \text{cm}^2/\text{m}$ Ø10 C/12

2.3 SEÇÕES DE CONCRETO UTILIZADAS

Foram utilizadas as seguintes seções de concreto para as respectivas estruturas:

• Leito Drenante:

Fundo: 15 cm

Paredes: 15 cm

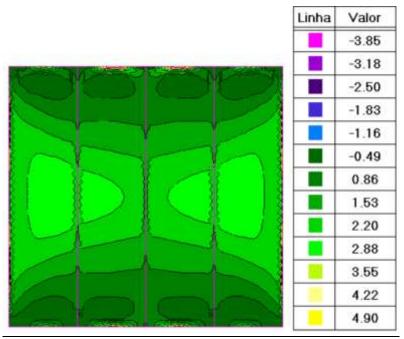
2.4 FUNDAÇÃO

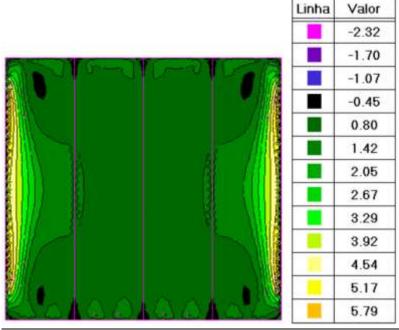
Para a estrutura do Reservatório utilizamos fundação direta, onde o reservatório é apoiado nas vigas e pilares que transmitem as cargas para as sapatas. Como modelo de cálculo adotamos um sistema de molas de resposta linear. Para obter a tensão média admissível a partir desse ensaio, utiliza-se o número médio de golpes aplicando a seguinte fórmula:

s = 0,20 * SPT Médio (kgf/m²). A partir dos valores de tensão média admissível é possível obter o valor de Kv por correlação, utilizando a tabela abaixo:

Tensão admissivel (kgf/cm²)	Kv (kgf/cm³)	Tensão admissível (kgf/cm²)	Kv (kgf/cm³)
0,25	0,65	2,15	4,30
0,30	0,78	2,20	4,40
0,35	0,91	2,25	4,50
0,40	1,04	2,30	4,60
0,45	1,17	2,35	4,70
0,50	1,30	2,40	4,80
0,55	1,39	2,45	4,90
0,60	1,48	2,50	5,00
0,63	1,57	2,55	5,10
0,70	1,66	2,60	5,20
0,75	1,75	2,65	5,30
0,80	1,84	2,70	5,40
0,85	1,93	2,75	5,50
0,90	2,02	2,80	5,60
0,95	2,11	2,85	5,70
1,00	2,20	2,90	5,80
1,05	2,29	2,95	5,90
1,10	2,38	3,00	6,00
1,15	2,47	3,05	6,10
1,20	2,56	3,10	6,20
1,25	2,65	3,15	6,30
1,30	2,74	3,20	6,40
1,35	2,83	3,25	6,50
1,40	2,92	3,30	6,60
1,45	3,01	3,35	6,70
1,50	3,10	3,40	6,80
1,55	3,19	3,45	6,90
1,60	3,28	3,50	7,00
1,65	3,37	3,55	7,10
1,70	3,46	3,60	7,20
1,75	3,55	3,65	7,30
1,80	3,64	3,70	7,40
1,85	3,73	3,75	7,50
1,90	3,82	3,80	7,60
1,95	3,91	3,85	7,70
2,00	4,00	3,90	7,80
2,05	4,10	3,95	7,90
2,10	4,20	4,00	8,00

Folte: Sale, Morrso (1993)

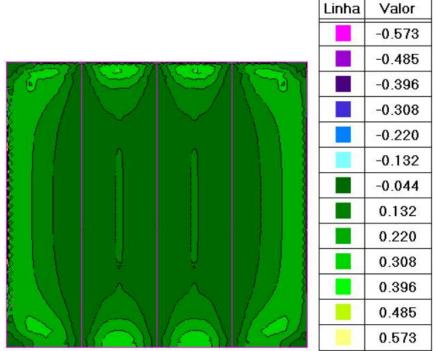

Adotamos □ma taxa de solo de 2.0Kg/dcm², co □orme so □dagem or □ec da.



3.0 LEITO DRENANTE

3.1 FUNDO

FUNDO - ENVOLTÓRIA DE CARREGAMENTOS MAX - FORÇAS NA DIREÇÃO DE X (tf/m)


FUNDO - ENVOLTÓRIA DE CARREGAMENTOS MAX - FORÇAS NA DIREÇÃO DE Y (tf/m)

FUNDO - ENVOLTÓRIA DE CARREGAMENTOS MAX - MOMENTO NA DIREÇÃO DE X (tf.m/m)

FUNDO - ENVOLTÓRIA DE CARREGAMENTOS MAX - MOMENTO NA DIREÇÃO DE Y (tf.m/m)

	Lajes Maciças em Concreto Armado											
Materiais Esforços Seção SEGURANÇA												
Aço	fck	Mk	Nk	h	d'	ξmáx.	As,mín	As,mín Class				
(fyk)	(Mpa)	(tf.m/m)	(tf/m)	(cm)	(cm)	ςmax.	(cm²/m)	γc	γs	γf	Agres.	
500	30	1,03	4,22	15	3,9	0,5	2,60	1,40	1,15	1,40	Classe III	

ELU	J - Flexão Co	omposta -	Arm. Assin	nétrica			
Armadura	nonossária	Arranjo					
Armadura	lecessaria	Ф (mm)) Esp. (cm) As,tot (cn				
AS1 (cm²m)	1	8	15,0	3,35			
As2 (cm²m)	2,21	8	15,0	3,35			

Resumo - ELU									
Zona	ω1	ω2							
Zona D	0,096	0,000	0,047						

Verifica	Verificação Fissuras - LAJES - FLEXÃO COMPOSTA - ARM. SIMPLES- CONCRETO ARMADO											
Mate	eriais	Esfo	rços		S	eção						
Aço (fyk)	fck (Mpa)	Mfr (tf.m/m)	Nfr (tf/m)	h (cm)	d' (cm)	Bitola ø	Esp. (cm)					
500	30	1,03	4,22	15	3,9	8	15,0					
	Cálculo											
As (cm²/m)	Es (Mpa)	Ecs (Mpa)	fctm (Mpa)	η1	hi (cm)	bi (cm)	Acri (cm²)					
3,35	210.000	26.072	2,90	2,25	9,90	12,00	118,80					
αs	ρri	ξ	x (cm)	σsi (Mpa)	Erro	Wk1 (mm)	Wk2 (mm)					
8,05	0,004231101	0,241	2,68	219,58	0,00	0,06763923	0,294553489					

FUNDO - FORÇA E MOMENTO NA DIREÇÃO DE X

	Lajes Maciças em Concreto Armado												
Mate	Materiais Esforços Seção SEGURANÇA												
Aço	fck	Mk	Nk	h	d'	ξmáx.	As,mín	24	., ., с				
(fyk)	(Mpa)	(tf.m/m)	(tf/m)	(cm)	(cm)	ςmax.	(cm²/m)	γc	γs	γf	Agres.		
500	30	0,57	4,54	15	3,9	0,5	2,60	1,40	1,15	1,40	Classe III		

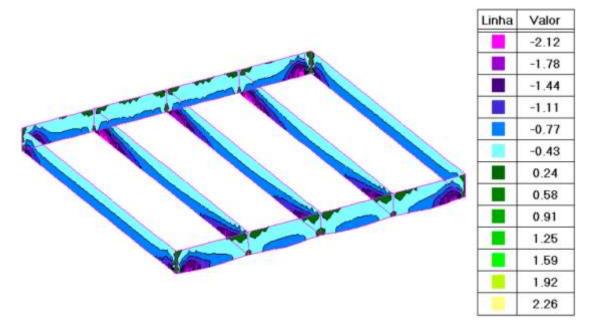
ELU - Flexão Composta - Arm. Assimétrica											
Armadura	accesária.	Arranjo									
Aimauura	iecessaria	Ф (mm)	Esp. (cm)	As,tot (cm²/m)							
As1 (cm²lm)	1	8	18,0	2,79							
As2 (cm²m)	0,73	8	18,0	2,79							

Resumo - ELU									
Z ona ξ ω1 ω2									
Zona D	0,059	0,000	0,016						

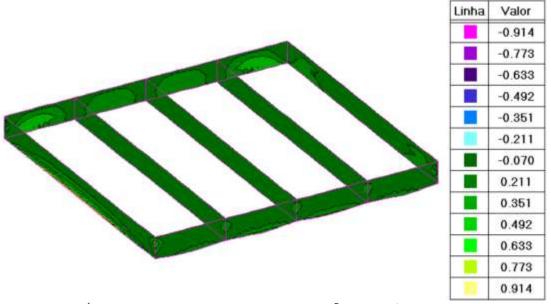
Verifica	ıção Fissuras	- LAJES - FLEX	(ÃO COMPOST	A - ARM. SIN	IPLES- CO	NCRETO A	RMADO				
Mate	eriais		S	eção							
Aço (fyk)	fck (Mpa)	Mfr (tf.m/m)	Nfr (tf/m)	h (cm)	d' (cm)	Bitola ø	Esp. (cm)				
500	500 30 0,573 4,54 15 3,9 8 18,0										
	Cálculo										
As (cm²/m)	Es (Mpa)	Ecs (Mpa)	fctm (Mpa)	η1	hi (cm)	bi (cm)	Acri (cm²)				
2,79	210.000	26.072	2,90	2,25	9,90	12,00	118,80				
αs	αs ρri ξ x (cm) σsi (Mpa) Erro Wk1 (mm) Wk2 (mm)										
8,05	0,004231101	0,278	3,08	99,26	0,00	0,0138217	0,133151363				

FUNDO - FORÇA E MOMENTO NA DIREÇÃO DE Y

3.2 PAREDES




PAREDES - ENVOLTÓRIA DE CARREGAMENTOS MAX - FORÇAS NA DIREÇÃO DE X (tf/m)


PAREDES - ENVOLTÓRIA DE CARREGAMENTOS MAX - FORÇAS NA DIREÇÃO DE Y (tf/m)

PAREDES - ENVOLTÓRIA DE CARREGAMENTOS MAX - MOMENTO NA DIREÇÃO DE X (tf.m/m)

PAREDES – ENVOLTÓRIA DE CARREGAMENTOS MAX - MOMENTO NA DIREÇÃO DE Y (tf.m/m)

			Lajes N	Maciças e	m Concr	reto Arn	nado				
Materials Esforços Seção SEGURANÇA											
Aço (fyk)	fck (Mpa)	Mk (tf.m/m)	Nk (tf/m)	h (cm)	(cm)	ξmāx.	As,min (cm²/m).	γe	γ=	γı	Classe Agres.
500	30	0,84	9,20	15	3,9	0,5	2,60	1,40	1,15	1,40	Classe I

ELU - Flexão Composta - Arm. Assimétrica									
Armadura ne		Arranjo							
Armadura ne	Cessaria	Φ (mm)	Esp. (cm)	As tot (cm²/m					
As1 (cm²m)	88	8	18,0	2,79					
As2 (cm ⁴ m)	0,57	8	18,0	2,79					

Resumo - ELU						
Zona	Ę	W1	W2			
Zona D	0,095	0,000	0.012			

Verific	ação Fissuras	- LAJES - FLEX	KÃO COMPOST	TA - ARM. SIN	MPLES- CO	ONCRETO A	RMADO
Mati	eriais	Esto	rços	Seção			
Aço (fyk)	fck (Mpa)	Mfr (tf.m/m)	Nfr (tf/m)	h (cm)	d' (cm)	Bitola ø	Esp. (cm)
500	30	0.84	9,2	15	3,9	8	18,0
			Cálculo				
As (cm²/m)	Es (Mpa)	Ecs (Mpa)	fctm (Mpa)	ηî	hi (cm)	bi (cm)	Acri (cm²)
2,79	210.000	26.072	2,90	2,25	9,90	12,00	118,80
as	pri	ξ	x (cm)	osi (Mpa)	Erro	Wkt (mm)	Wk2 (mm)
8.05	0.004231101	0.342	3.80	97.05	0.00	0.01321381	0,130190388

PAREDES – FORÇA E MOMENTO NA DIREÇÃO DE X

	Lajes Maciças em Concreto Armado										
Materiais		Esforços		Seção			SEGURANÇA				
Ago (fyk)	fck (Mpa)	Mk (tf.m/m)	Nk (tf/m)	h (cm)	d' (cm)	ξmáx.	As,min (cm²/m)	γe	γ»	γr	Classe Agres.
500	30	0.63	2.12	15	3.9	0.5	2.60	1.40	1,15	1.40	Classe III

ELU - Flexão Composta - Arm. Assimétrica									
Armadura as		Arranjo							
Armadura necessária		Φ (mm)	Esp. (cm)	As,tot (cm²/m					
As1 (cm²lm)	1.63	8	15,0	3,35					
As2 (cm³fm)	1,42	8	15,0	3,35					

Resumo - ELU						
Zona	ξ	ωι	W2			
Zona D	0,057	0,000	0,031			

Verificação Fissuras - LAJES - FLEXÃO COMPOSTA - ARM. SIMPLES- CONCRETO ARMADO								
Mate	eriais	Esfo	rços		Seção			
Aço (fyk)	fck (Mpa)	Mfr (tf.m/m)	Nfr (tf/m)	h (cm)	d' (cm)	Bitola ø	Esp. (cm)	
500	30	0,633	2.12	15	3.9	8	15,0	
			Cálculo		100.00	"	1000	
As (cm²/m)	Es (Mpa)	Ecs (Mpa)	fctm (Mpa)	η1	hi (cm)	bi (cm)	Acri (cm²)	
3,35	210.000	26.072	2,90	2,25	9,90	12,00	118,80	
Ø5	pri	- 4	x (cm)	osi (Mpa)	Erro	Wk1 (mm)	Wk2 (mm)	
8,05	0,004231101	0,232	2,58	143,42	0.00	0,02885494	0,192386669	

PAREDES – FORÇA E MOMENTO NA DIREÇÃO DE Y

CARLOS RAPHAEL MONTEIRO DE LEMOS

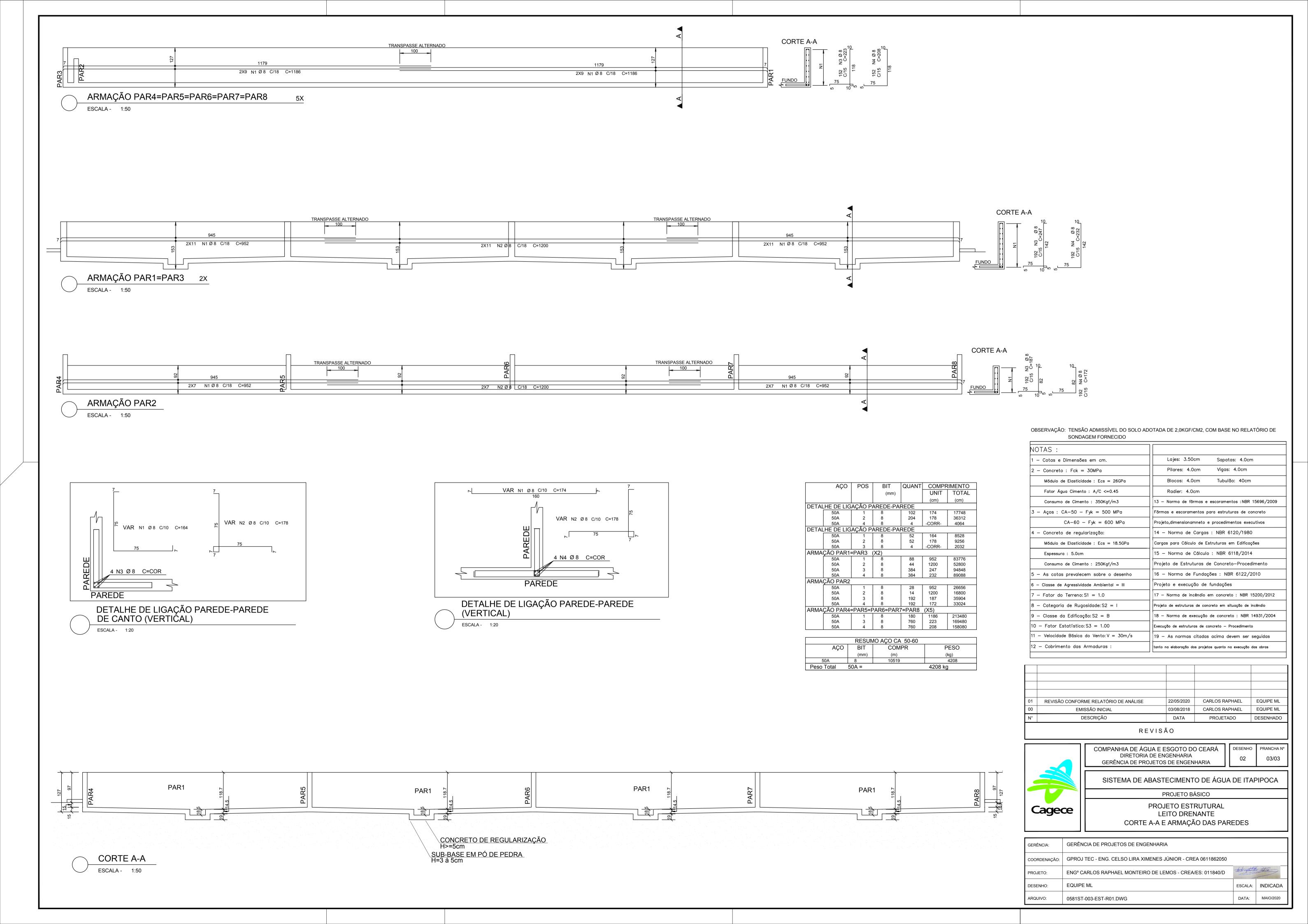
CREA-ES 011840/D

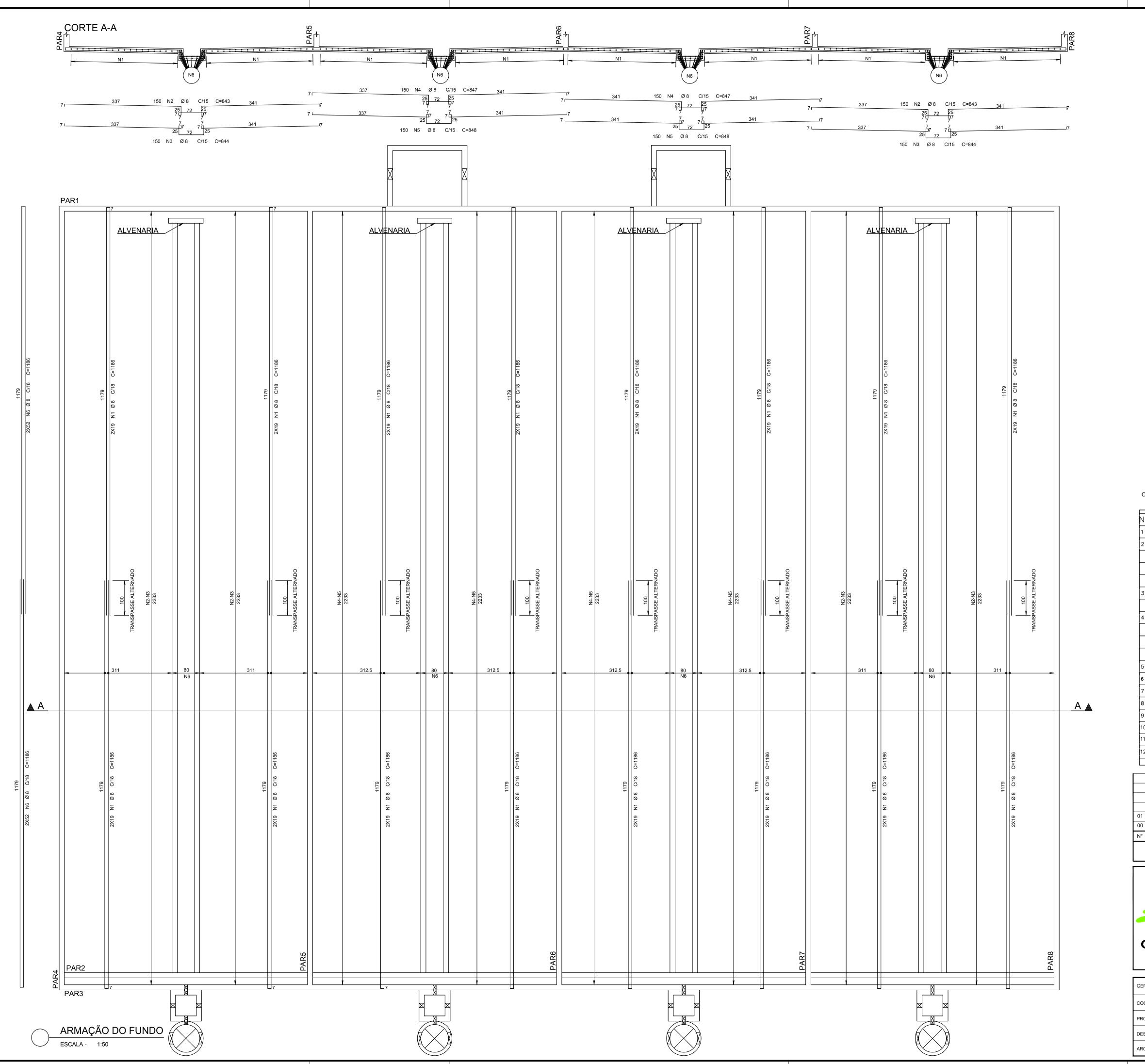
Resumo Estrutural por Elementos

RESUMO ESTRUTURAL POR ELEMENTOS

				endennania di Noseros			
LEITO DRENANTE							
CONCRETO ESTRUTURAL - Fck = 30 MPa							
	FUNDO	PAREDES	XXX	TOTAL			
VOLUME (m³)	104,00	38,00	XXX	142,00			
FÔRMA (m²)	0,00	498,00	XXX	498,00			
	_						
AÇO	BIT (mm)	COMPR (m)	PESO (kg)				
12.5	8	19824	7930				
TOTA	L	19824	7930				
	PAREDE	S					
AÇO	BIT (mm)	COMPR (m)	PESO (kg)				
50A	8	10519	4208				
TOTA	L	10519	4208				

CARLOS RAPHAEL MONTEIRO DE LEMOS CREA-ES 011840/D


Peças Gráficas



PEÇAS GRÁFICAS

Relação de Plantas:

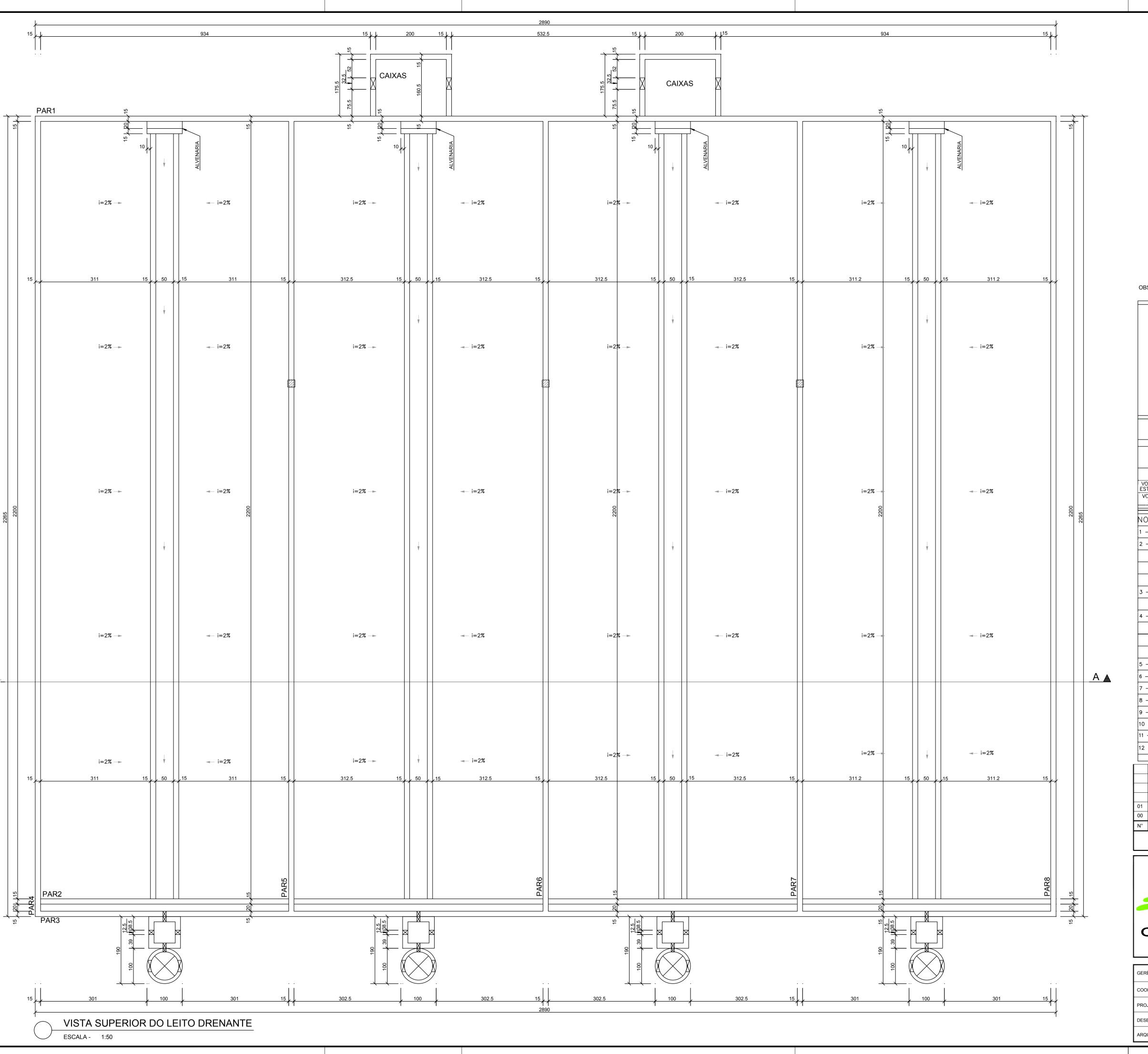
	LEITO DRENANTE						
DESENHO:	PRANCHA:	TÍTULO:					
02	01/03	Projeto Estrutural – Leito Drenante – Vista Superior do Leito de Drenagem					
02	02/03	Projeto Estrutural – Leito Drenante – Armação do Fundo					
02	03/03	Projeto Estrutural – Leito Drenante – Corte A-A e Armação das Paredes					

OBSERVAÇÃO: TENSÃO ADMISSÍVEL DO SOLO ADOTADA DE 2,0KGF/CM2, COM BASE NO RELATÓRIO DE SONDAGEM FORNECIDO

NOTAS :	
1 — Cotas e Dimensões em cm.	Lajes: 3.50cm Sapatas: 4.0cm
2 — Concreto : Fck = 30MPa	Pilares: 4.0cm Vigas: 4.0cm
Módulo de Elasticidade : Ecs = 26GPa	Blocos: 4.0cm Tubulão: 40cm
Fator Água Cimento : A/C <=0.45	Radier: 4.0cm
Consumo de Cimento : 350Kgf/m3	13 — Norma de fôrmas e escoramentos :NBR 15696/2009
3 - Aços : CA-50 - Fyk = 500 MPa	Fôrmas e escoramentos para estruturas de concreto
CA-60 - Fyk = 600 MPa	Projeto,dimensionamneto e procedimentos executivos
4 — Concreto de regularização:	14 - Norma de Cargas : NBR 6120/1980
Módulo de Elasticidade : Ecs = 18.5GPa	Cargas para Cálculo de Estruturas em Edificações
Espessura : 5.0cm	15 - Norma de Cálculo : NBR 6118/2014
Consumo de Cimento : 250Kgf/m3	Projeto de Estruturas de Concreto—Procedimento
5 — As cotas prevalecem sobre o desenho	16 - Norma de Fundações : NBR 6122/2010
6 — Classe de Agressividade Ambiental = III	Projeto e execução de fundações
7 — Fator do Terreno: S1 = 1.0	17 — Norma de incêndio em concreto : NBR 15200/2012
8 — Categoria de Rugosidade:S2 = I	Projeto de estruturas de concreto em situação de incêndio
9 — Classe da Edificação: S2 = B	18 — Norma de execução de concreto : NBR 14931/2004
10 — Fator Estatístico:S3 = 1.00	Execução de estruturas de concreto — Procedimento
11 - Velocidade Básica do Vento:V = 30m/s	19 — As normas citadas acima devem ser seguidas
12 — Cobrimento das Armaduras :	tanto na elaboração dos projetos quanto na execução das obras

REVISÃO CONFORME RELATÓRIO DE ANÁLISE	22/05/2020	CARLOS RAPHAEL	EQUIPE ML
EMISSÃO INICIAL	03/08/2018	CARLOS RAPHAEL	EQUIPE ML
DESCRIÇÃO	DATA	PROJETADO	DESENHADO

REVISÃO


COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ DIRETORIA DE ENGENHARIA GERÊNCIA DE PROJETOS DE ENGENHARIA DESENHO PRANCHA Nº

02/03

SISTEMA DE ABASTECIMENTO DE ÁGUA DE ITAPIPOCA

PROJETO BÁSICO PROJETO ESTRUTURAL LEITO DRENANTE ARMAÇÃO DO FUNDO

GERÊNCIA:	GERÊNCIA DE PROJETOS DE ENGENHARIA		_
COORDENAÇÃO:	GPROJ TEC - ENG. CELSO LIRA XIMENES JÚNIOR - CREA 0611862050		
PROJETO:	ENGº CARLOS RAPHAEL MONTEIRO DE LEMOS - CREA/ES: 011840/D	Sunter explose the	a high has
DESENHO:	EQUIPE ML	ESCALA:	INDICADA
ARQUIVO:	0581ST-002-EST-R01.DWG	DATA:	MAIO/2020

OBSERVAÇÃO: TENSÃO ADMISSÍVEL DO SOLO ADOTADA DE 2,0KGF/CM2, COM BASE NO RELATÓRIO DE SONDAGEM FORNECIDO

ML engenharia & projetos

QUANTITATIVOS

		ELEMENTOS ESTRUTURAIS						
	LAJES	PAREDES	FUNDO	VIGAS	PILAR	FUNDAÇÃO	CAIXAS	TOTAL
ÁREA DE FORMAS (m2)	xxx	498.00	xxx	xxx	XXX	xxx	19.00	498.00
VOLUME DE CONCRETO ESTRUTURAL 30MPA(m3) xxx	38.00	104.00	xxx	XXX	xxx	4.00	142.00
VOLUME DE CONCRETO SIMPLES 15MPA(m3)	×××	XXX	XXX	xxx	XXX	xxx	XXX	xxx

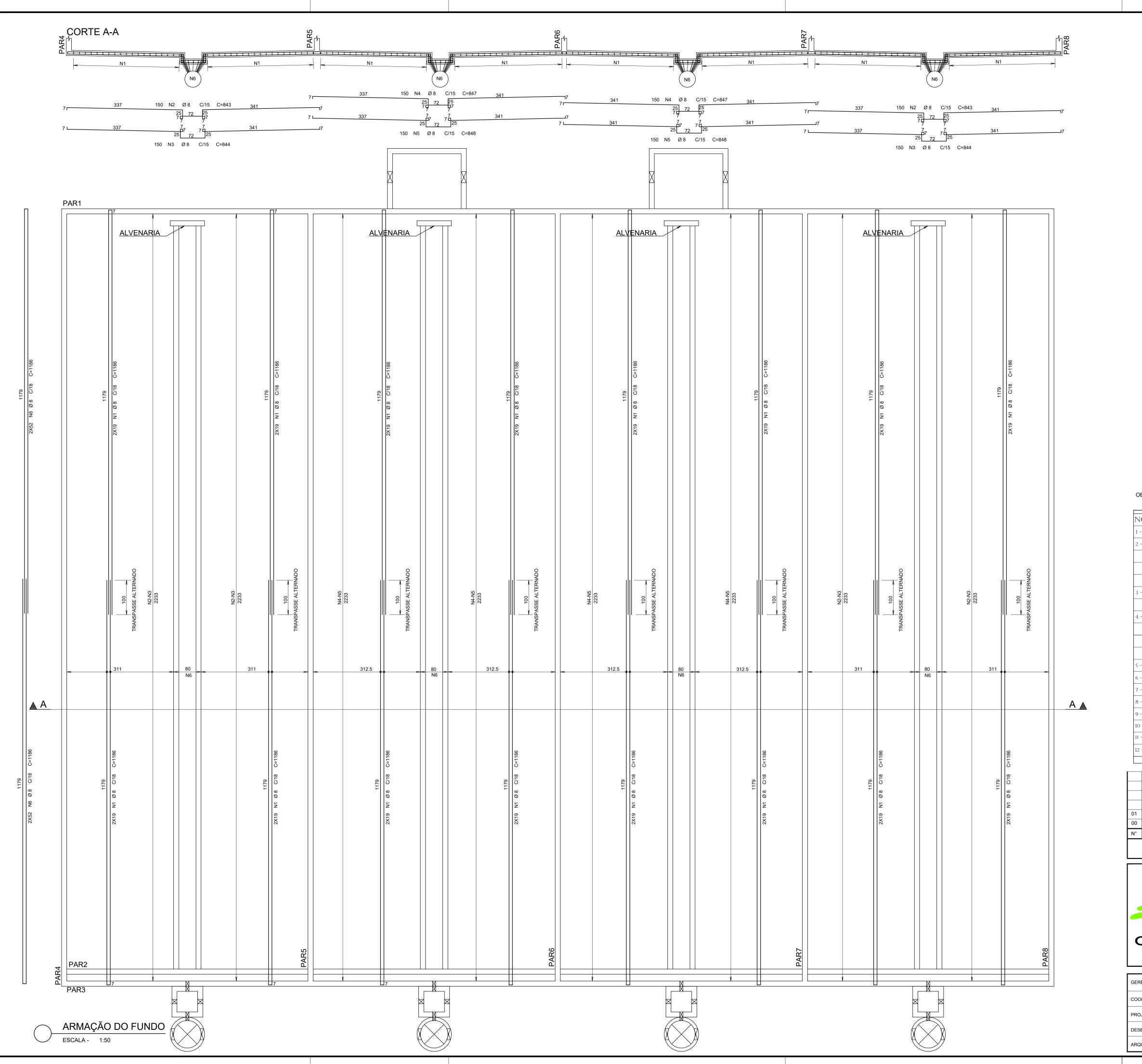
NOTAS :	
1 — Cotas e Dimensões em cm.	Lajes: 3.50cm Sapatas: 4.0cm
2 - Concreto : Fck = 30MPa	Pilares: 4.0cm Vigas: 4.0cm
Módulo de Elasticidade : Ecs = 26GPa	Blocos: 4.0cm Tubulão: 40cm
Fator Água Cimento : A/C <=0.45	Radier: 4.0cm
Consumo de Cimento : 350Kgf/m3	13 — Norma de fôrmas e escoramentos :NBR 15696/2009
3 - Aços : CA-50 - Fyk = 500 MPa	Fôrmas e escoramentos para estruturas de concreto
CA-60 - Fyk = 600 MPa	Projeto,dimensionamneto e procedimentos executivos
4 — Concreto de regularização:	14 — Norma de Cargas : NBR 6120/1980
Módulo de Elasticidade : Ecs = 18.5GPa	Cargas para Cálculo de Estruturas em Edificações
Espessura : 5.0cm	15 — Norma de Cálculo : NBR 6118/2014
Consumo de Cimento : 250Kgf/m3	Projeto de Estruturas de Concreto—Procedimento
5 — As cotas prevalecem sobre o desenho	16 — Norma de Fundações : NBR 6122/2010
6 — Classe de Agressividade Ambiental = III	Projeto e execução de fundações
7 — Fator do Terreno:S1 = 1.0	17 — Norma de incêndio em concreto : NBR 15200/2012
8 — Categoria de Rugosidade: S2 = I	Projeto de estruturas de concreto em situação de incêndio
9 — Classe da Edificação: S2 = B	18 — Norma de execução de concreto : NBR 14931/2004
10 - Fator Estatístico: S3 = 1.00	Execução de estruturas de concreto — Procedimento
11 — Velocidade Básica do Vento:V = 30m/s	19 — As normas citadas acima devem ser seguidas
12 — Cobrimento das Armaduras :	tanto na elaboração dos projetos quanto na execução das obras

	_			
	_			
	REVISÃO CONFORME RELATÓRIO DE ANÁLISE	22/05/2020	CARLOS RAPHAEL	EQUIPE ML
	EMISSÃO INICIAL	03/08/2018	CARLOS RAPHAEL	EQUIPE ML
_	DESCRIÇÃO	DATA	PROJETADO	DESENHADO
-				

REVISÃO

COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ DIRETORIA DE ENGENHARIA GERÊNCIA DE PROJETOS DE ENGENHARIA

SISTEMA DE ABASTECIMENTO DE ÁGUA DE ITAPIPOCA


DESENHO PRANCHA Nº

01/03

PROJETO BÁSICO

PROJETO ESTRUTURAL LEITO DRENANTE VISTA SUPERIOR DO LEITO DE DRENAGEM

GERÊNCIA:	GERÊNCIA DE PROJETOS DE ENGENHARIA		
COORDENAÇÃO:	GPROJ TEC - ENG. CELSO LIRA XIMENES JÚNIOR - CREA 0611862050		
PROJETO:	ENGº CARLOS RAPHAEL MONTEIRO DE LEMOS - CREA/ES: 011840/D	the to exprise the	o topla
DESENHO:	EQUIPE ML	ESCALA:	INDICADA
ARQUIVO:	0581ST-001-EST-R01.DWG	DATA:	MAIO/2020

OBSERVAÇÃO: TENSÃO ADMISSÍVEL DO SOLO ADOTADA DE 2,0KGF/CM2, COM BASE NO RELATÓRIO DE SONDAGEM FORNECIDO

NOTAS :	
1 – COTAS E DIMENSÕES EM CM.	LAJES: 3.50CM SAPATAS: 4.0CM
2 - CONCRETO : FCK = 30MPA	PILARES: 4.0CM VIGAS: 4.0CM
MÓDULO DE ELASTICIDADE : ECS = 26GPA	BLOCOS: 4.0CM TUBULÃO: 40CM
FATOR ÁGUA CIMENTO : A/C <=0.45	RADIER: 4.0CM
CONSUMO DE CIMENTO : 350KGF/M3	13 - NORMA DE FÔRMAS E ESCORAMENTOS :NBR 15696/2009
3 - ACOS : CA-50 - FYK = 500 MPA	FÓRMAS E ESCORAMENTOS PARA ESTRUTURAS DE CONCRETO
CA-60 - FYK = 600 MPA	PROJETO, DIMENSIONAMNETO E PROCEDIMENTOS EXECUTIVOS
4 - CONCRETO DE REGULARIZAÇÃO:	14 - NORMA DE CARGAS : NBR 6120/1980
MÓDULO DE ELASTICIDADE : ECS = 18.5GPA	CARGAS PARA CÁLCULO DE ESTRUTURAS EM EDIFICAÇÕES
ESPESSURA : 5.0CM	15 - NORMA DE CÁLCULO : NBR 6118/2014
CONSUMO DE CIMENTO : 250KGF/M3	PROJETO DE ESTRUTURAS DE CONCRETO-PROCEDIMENTO
5 - AS COTAS PREVALECEM SOBRE O DESENHO	16 - NORMA DE FUNDAÇÕES : NBR 6122/2010
6 - CLASSE DE AGRESSIVIDADE AMBIENTAL = III	PROJETO E EXECUÇÃO DE FUNDAÇÕES
7 - FATOR DO TERRENO:SI = 1.0	17 - NORMA DE INCÊNDIO EM CONCRETO : NBR 15200/2012
8 - CATEGORIA DE RUGOSIDADE:S2 = I	PROJETO DE ESTRUTURAS DE CONCRETO EM SITUAÇÃO DE INCÊNDIO
9 - Classe da edificação:s2 = B	18 - NORMA DE EXECUÇÃO DE CONCRETO : NBR 14931/2004
10 - FATOR ESTATÍSTICO:S3 = 1.00	EXECUÇÃO DE ESTRUTURAS DE CONCRETO - PROCEDIMENTO
11 - VELOCIDADE BÁSICA DO VENTO:V = 30M/S	19 - AS NORMAS CITADAS ACIMA DEVEM SER SEGUIDAS
12 - COBRIMENTO DAS ARMADURAS :	TANTO NA ELABORAÇÃO DOS PROJETOS QUANTO NA EXECUÇÃO DAS OBRA:

	REVISÃO CONFORME RELATÓRIO DE ANÁLISE	22/05/2020	CARLOS RAPHAEL	EQUIPE ML
	EMISSÃO INICIAL	03/08/2018	CARLOS RAPHAEL	EQUIPE ML
	DESCRIÇÃO	DATA	PROJETADO	DESENHADO
_		•		

REVISÃO

COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ DIRETORIA DE ENGENHARIA GERÊNCIA DE PROJETOS DE ENGENHARIA DESENHO PRANCHA Nº

SISTEMA DE ABASTECIMENTO DE ÁGUA DE ITAPIPOCA

02/03

PROJETO EXECUTIVO

PROJETO ESTRUTURAL LEITO DRENANTE ARMAÇÃO DO FUNDO

GERÊNCIA:	GERÊNCIA DE PROJETOS DE ENGENHARIA		
COORDENAÇÃO:	GPROJ TEC - ENG. CELSO LIRA XIMENES JÚNIOR - CREA 0611862050		
PROJETO:	ENGº CARLOS RAPHAEL MONTEIRO DE LEMOS - CREA/ES: 011840/D	Mules explant the	a distra
DESENHO:	EQUIPE ML	ESCALA:	INDICADA
ARQUIVO:	0581ST-002-EST-R01.DWG	DATA:	MAIO/2020